Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 459(1): 143-7, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-10508934

ABSTRACT

In the bacteriorhodopsin-containing proteoliposomes, a laser flash is found to induce formation of a bathointermediate decaying in several seconds, the difference spectrum being similar to the purple-blue transition. Different pH buffers do not affect the intermediate, whereas an uncoupler, gramicidin A, and lipophilic ions accelerate decay of the intermediate or inhibit its formation. In the liposomes containing E204Q bacteriorhodopsin mutant, formation of the intermediate is suppressed. In the wild-type bacteriorhodopsin liposomes, the bathointermediate formation is pH-independent within the pH 5-7 range. The efficiency of the long-lived O intermediate formation increases at a low pH. In the wild-type as well as in the E204Q mutant purple membrane, the O intermediate decay is slowed down at slightly higher pH values than that of the purple-blue transition. It is suggested that the membrane potential affects the equilibrium between the bacteriorhodopsin ground state (Glu-204 is protonated and Asp-85 is deprotonated) and the O intermediate (Asp-85 is protonated and Glu-204 is deprotonated), stabilizing the latter by changing the relative affinity of Asp-85 and Glu-204 to H(+). At a low pH, protonation of a proton-releasing group (possibly Glu-194) in the bacteriorhodopsin ground state seems to prevent deprotonation of the Glu-204 during the photocycle. Thus, all protonatable residues of the outward proton pathway should be protonated in the O intermediate. Under such conditions, membrane potential stabilization of the O intermediate in the liposomes can be attributed to the direct effect of the potential on the pK value of Asp-85.


Subject(s)
Bacteriorhodopsins/metabolism , Halobacterium salinarum/physiology , Purple Membrane/physiology , Bacteriorhodopsins/chemistry , Bacteriorhodopsins/genetics , Hydrogen-Ion Concentration , Liposomes , Membrane Potentials , Mutation , Proton Pumps/metabolism
2.
FEBS Lett ; 427(1): 59-63, 1998 May 01.
Article in English | MEDLINE | ID: mdl-9613600

ABSTRACT

The flash-induced voltage response of halorhodopsin at high NaCl concentration comprises two main kinetic components. The first component with tau approximately 1 micros does not exceed 4% of the overall response amplitude and is probably associated with the formation of the L (hR520) intermediate. The second main component with tau approximately 1-2.5 ms which is independent of Cl- concentration can be ascribed to the transmembrane Cl- translocation during the L intermediate decay. The photoelectric response in the absence of Cl- has the opposite polarity and does not exceed 6% of the overall response amplitude at high NaCl concentration. A pH decrease results in substitution of the Cl(-)-dependent components by the photoresponse which is similar to that in the absence of Cl-. Thus, the difference between photoresponses of chloride-binding and chloride-free halorhodopsin forms resembles that of bacteriorhodopsin purple neutral and blue acid forms, respectively. The photovoltage data obtained can hardly be explained within the framework of the photocycle scheme suggested by Varo et al. [Biochemistry 34 (1995), 14490-14499]. We suppose that the O-type intermediate belongs to some form of halorhodopsin incapable of Cl- transport.


Subject(s)
Bacterial Proteins/physiology , Bacteriorhodopsins/physiology , Chlorides/physiology , Natronobacterium/physiology , Halorhodopsins , Membrane Potentials/drug effects , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...