Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Biol Phys ; 48(4): 383-397, 2022 12.
Article in English | MEDLINE | ID: mdl-36434309

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONPs) are widely used in clinical research. The single domain nanoparticles are used in magnetic fluid hyperthermia (MFH) to treat cancer. When nanoparticles are exposed to an external magnetic field, it generates heat destroying tumour cells. SPIONPs have a large surface area, so the particles tend to aggregate, which leads to the destabilization of the colloidal system. To enhance the stability and biocompatibility of the nanomaterials, it is necessary to coat the surface with biocompatible material. Magnetite (Fe3O4) is a superparamagnetic nanoparticle (SPNPs) that was functionalized with oleic acid (OA) by sol-gel process using ethanol as the solvent. The oleic acid-coated magnetite (OA-Fe3O4) was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), UV-Visible diffuse reflectance spectroscopy (UV-DRS) and vibrating sample magnetometer (VSM). The haemolysis test has been used to investigate the haemocompatibility properties of nanomaterials. Hyperthermia study shows a high SAR value for the concentration of 1 mg/ml at the field of 600 Oe and frequency of 316 kHz. The OA coating enhanced the haemocompatibility of synthesized magnetite nanoparticles which can be used for magnetic fluid hyperthermia applications.


Subject(s)
Oleic Acid
2.
ACS Omega ; 6(8): 5266-5275, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33681567

ABSTRACT

Ferrites are one of the most studied materials around the globe due to their distinctive biological and magnetic properties. In the same line, anisotropic MnFe2O4 nanoparticles have been explored as a potential candidate possessing excellent magnetic properties, biocompatibility, and strong magnetic resonance imaging (MRI) properties such as r2 relaxivity for magnetic field-guided biomedical applications. The current work reports the synthesis and morphological evolution of MnFe2O4 nanocubes (MNCs) in a hydrothermal process using different volume ratios of water and ethanol. The synthesis protocol was designed to influence the properties of the ferrite nanocubes, for example, the variation in surface tension, dielectric properties, and the ionic character of the solvent, and this has been achieved by adding ethanol into water during the synthesis. Pristine MnFe2O4 is formed with well-defined cubic to irregular cubic shapes with the addition of ethanol, as evidenced from XRD, field emission scanning electron microscopy, and porosity measurements. MNCs have been investigated for magnetic hyperthermia and MRI applications. Well-defined cubic-shaped MNCs with uniform size distribution possessed a high saturation magnetization of 63 emu g-1 and a transverse relaxivity (r2) of 216 mM-1 s-1 (Mn + Fe). Furthermore, the colloidal nanocubes showed concentration-dependent hyperthermic response under an alternating magnetic field. The MNCs are biocompatible but advantageously show anticancer activities on breast cancer MCF 7 and MDA-MB-231 cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...