Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 133(27): 10459-72, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21604803

ABSTRACT

Synthesis of functionalized magnetic nanoparticles (NPs) for biomedical applications represents a current challenge. In this paper we present the synthesis and characterization of water-dispersible sugar-coated iron oxide NPs specifically designed as magnetic fluid hyperthermia heat mediators and negative contrast agents for magnetic resonance imaging. In particular, the influence of the inorganic core size was investigated. To this end, iron oxide NPs with average size in the range of 4-35 nm were prepared by thermal decomposition of molecular precursors and then coated with organic ligands bearing a phosphonate group on one side and rhamnose, mannose, or ribose moieties on the other side. In this way a strong anchorage of the organic ligand on the inorganic surface was simply realized by ligand exchange, due to covalent bonding between the Fe(3+) atom and the phosphonate group. These synthesized nanoobjects can be fully dispersed in water forming colloids that are stable over very long periods. Mannose, ribose, and rhamnose were chosen to test the versatility of the method and also because these carbohydrates, in particular rhamnose, which is a substrate of skin lectin, confer targeting properties to the nanosystems. The magnetic, hyperthermal, and relaxometric properties of all the synthesized samples were investigated. Iron oxide NPs of ca. 16-18 nm were found to represent an efficient bifunctional targeting system for theranostic applications, as they have very good transverse relaxivity (three times larger than the best currently available commercial products) and large heat release upon application of radio frequency (RF) electromagnetic radiation with amplitude and frequency close to the human tolerance limit. The results have been rationalized on the basis of the magnetic properties of the investigated samples.


Subject(s)
Carbohydrates/chemistry , Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Water/chemistry , Ferric Compounds/therapeutic use , Humans , Hyperthermia, Induced/methods , Magnetite Nanoparticles/therapeutic use
2.
Nanoscale ; 3(3): 1200-10, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21258695

ABSTRACT

This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.33(3+)Gdx3+/[Mo(CN)8]3- (Ln=Eu (x=0.34), Tb (x=0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0→7F0-4 (Eu3+) or the 5D4→7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.33(3+)Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.


Subject(s)
Luminescent Measurements/methods , Magnetic Resonance Spectroscopy/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Polymers/chemistry , Magnetics , Materials Testing , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...