Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11936, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488132

ABSTRACT

In chemical enhanced oil recovery (cEOR) techniques, surfactants are extensively used for enhancing oil recovery by reducing interfacial tension and/or modifying wettability. However, the effectiveness and economic feasibility of the cEOR process are compromised due to the adsorption of surfactants on rock surfaces. Therefore, surfactant adsorption must be reduced to make the cEOR process efficient and economical. Herein, the synergic application of low salinity water and a cationic gemini surfactant was investigated in a carbonate rock. Firstly, the interfacial tension (IFT) of the oil-brine interface with surfactant at various temperatures was measured. Subsequently, the rock wettability was determined under high-pressure and high-temperature conditions. Finally, the study examined the impact of low salinity water on the adsorption of the cationic gemini surfactant, both statically and dynamically. The results showed that the low salinity water condition does not cause a significant impact on the IFT reduction and wettability alteration as compared to the high salinity water conditions. However, the low salinity water condition reduced the surfactant's static adsorption on the carbonate core by four folds as compared to seawater. The core flood results showed a significantly lower amount of dynamic adsorption (0.11 mg/g-rock) using low salinity water conditions. Employing such a method aids industrialists and researchers in developing a cost-effective and efficient cEOR process.

2.
ACS Omega ; 6(48): 32342-32348, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34901587

ABSTRACT

The need to minimize surfactant adsorption on rock surfaces has been a challenge for surfactant-based, chemical-enhanced oil recovery (cEOR) techniques. Modeling of adsorption experimental data is very useful in estimating the extent of adsorption and, hence, optimizing the process. This paper presents a mini-review of surfactant adsorption isotherms, focusing on theories of adsorption and the most frequently used adsorption isotherm models. Two-step and four-region adsorption theories are well-known, with the former representing adsorption in two steps, while the latter distinguishes four regions in the adsorption isotherm. Langmuir and Freundlich are two-parameter adsorption isotherms that are widely used in cEOR studies. The Langmuir isotherm is applied to monolayer adsorption on homogeneous sites, whereas the Freundlich isotherm suites are applied to multilayer adsorption on heterogeneous sites. Some more complex adsorption isotherms are also discussed in this paper, such as Redlich-Peterson and Sips isotherms, both involve three parameters. This paper will help select and apply a suitable adsorption isotherm to experimental data.

3.
Polymers (Basel) ; 12(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370027

ABSTRACT

Compatible surfactant-polymer (SP) hybrid systems at high temperature are in great demand due to the necessity of chemical flooding in high-temperature oil reservoirs. The rheological properties of novel SP systems were studied. The SP system used in this study consists of a commercial polymer and four in-house synthesized polyoxyethylene cationic gemini surfactants with various spacers (mono phenyl and biphenyl ring) and different counterions (bromide and chloride). The impact of surfactant concentration, spacer nature, counterions, and temperature on the rheological features of SP solutions was examined using oscillation and shear measurements. The results were compared with a pure commercial polymer. All surfactants exhibited good thermal stability in seawater with no precipitation. Shear viscosity and storage modulus were measured as a function of shear rate and angular frequency, respectively. The experimental results revealed that the novel SP solution with a mono phenyl and chloride counterions produces a better performance in comparison with the SP solution, which contains mono phenyl and bromide counterions. Moreover, the effect is enhanced when the mono phenyl ring is replaced with a biphenyl ring. Shear viscosity and storage modulus decrease by increasing surfactant concentration at the same temperature, due to the charge screening effect. Storage modulus and complex viscosity reduce by increasing the temperature at a constant angular frequency of 10 rad/s. Among all studied SP systems, a surfactant containing a biphenyl ring in the spacer with chloride as a counterion has the least effect on the shear viscosity of the polymer. This study improves the understanding of tuning the surfactant composition in making SP solutions with better rheological properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...