Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998303

ABSTRACT

Fiber-reinforced plywood is a composite material that combines the natural strength and rigidity of plywood with the added durability and resilience provided by reinforcing fibers. This type of plywood is designed to offer improved characteristics over standard plywood, including enhanced strength, stiffness, resistance to impact and moisture, and environmental degradation. By integrating reinforcing fibers, such as glass, carbon, or natural fibers (like flax, bamboo, or hemp) into or onto plywood, manufacturers can create a material that is better suited for applications where traditional plywood might fall short or when a decrease in product weight or savings in wood raw material are necessary. This report reviews the current progress in fiber-reinforced plywood in the context of plywood as a construction material to better understand the potential gains in plywood applications, mechanical parameters, and material savings. It is found that a simple and cost-effective procedure of fiber reinforcement allows for substantial improvements in plywood's mechanical properties, typically to the extent of 10-40%. It is suggested that the wider adoption of fiber-reinforced plywood, especially in load- and impact-bearing applications, would greatly contribute to enhanced durability and longevity of the material while also allowing for more sustainable use of raw wood material.

2.
Materials (Basel) ; 17(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930159

ABSTRACT

Selective demolition of building components and recycling construction demolition waste is a growing tendency as we move towards a circular construction. This study investigates the feasibility of using demolition waste from calcium silicate brick masonry as an aggregate in concrete and mortar. The purpose is to assess its impact on concrete and mortar properties, including compressive strength, durability, and workability. Silicate bricks from two demolished buildings were processed into aggregate, and laboratory experiments were conducted to evaluate concrete and mortar made with varying proportions of recycled aggregate. Results indicate that replacing natural aggregate (limestone rubble and sand) with recycled silicate brick aggregate up to 50% does not significantly compromise concrete performance, with no significant decrease in compressive strength observed. Frost resistance of the concrete made with recycled aggregate even surpasses that of reference concrete, possibly due to the lower density and higher (closed) porosity of the recycled aggregate. However, challenges such as increased water demand and loss of workability over time are noted with higher proportions of recycled aggregate. Further research is recommended to explore strategies for mitigating these challenges and to assess the effects of chemical admixtures on concrete properties. Overall, the findings suggest that recycled calcium silicate brick holds promise as a sustainable alternative for aggregate in concrete production.

3.
Materials (Basel) ; 14(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443222

ABSTRACT

The reinforcement of plywood is demonstrated by laminating pretensioned basalt fibers between veneer sheets, to fabricate so-called prestressed plywood. Belt type basalt fibers bearing a specific adhesion promoting silane sizing were aligned between veneer sheets with 20 mm spacing and were pretensioned at 150 N. Three-layer plywood samples were prepared and tested for tensile strength at room temperature and at 150 °C. The room temperature tensile tests revealed a 35% increase in tensile strength for prestressed plywood compared to that of the conventional specimen. The reinforcement effect deteriorated at 150 °C but was restored upon cooling to room temperature. The deterioration is attributed to the weakening of bonding between the basalt fibers and phenolic resin matrix at elevated temperatures due to the softening of the resin.

4.
Data Brief ; 4: 162-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217782

ABSTRACT

Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

SELECTION OF CITATIONS
SEARCH DETAIL
...