Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Wearable Technol ; 3: e10, 2022.
Article in English | MEDLINE | ID: mdl-38486891

ABSTRACT

This mixed-methods study investigates the use of wearable technology in embodied psychology research and explores the potential of incorporating bio-signals to focus on the bodily impact of the social experience. The study relies on scientifically established psychological methods of studying social issues, collective relationships and emotional overloads, such as sociodrama, in combination with participant observation to qualitatively detect and observe verbal and nonverbal aspects of social behavior. We evaluate the proposed method through a pilot sociodrama session and reflect on the outcomes. By utilizing an experimental setting that combines video cameras, microphones, and wearable sensors measuring physiological signals, specifically, heart rate, we explore how the synchronization and analysis of the different signals and annotations enables a mixed-method that combines qualitative and quantitative instruments in studying embodied expressiveness and social interaction.

3.
J Vis Exp ; (171)2021 05 08.
Article in English | MEDLINE | ID: mdl-34028426

ABSTRACT

The fields that develop methods for sensory substitution and sensory augmentation have aimed to control external goals using signals from the central nervous systems (CNS). Less frequent however, are protocols that update external signals self-generated by interactive bodies in motion. There is a paucity of methods that combine the body-heart-brain biorhythms of one moving agent to steer those of another moving agent during dyadic exchange. Part of the challenge to accomplish such a feat has been the complexity of the setup using multimodal bio-signals with different physical units, disparate time scales and variable sampling frequencies. In recent years, the advent of wearable bio-sensors that can non-invasively harness multiple signals in tandem, has opened the possibility to re-parameterize and update the peripheral signals of interacting dyads, in addition to improving brain- and/or body-machine interfaces. Here we present a co-adaptive interface that updates efferent somatic-motor output (including kinematics and heart rate) using biosensors; parameterizes the stochastic bio-signals, sonifies this output, and feeds it back in re-parameterized form as visuo/audio-kinesthetic reafferent input. We illustrate the methods using two types of interactions, one involving two humans and another involving a human and its avatar interacting in near real time. We discuss the new methods in the context of possible new ways to measure the influences of external input on internal somatic-sensory-motor control.


Subject(s)
Brain , Sensation , Humans
4.
Sensors (Basel) ; 18(9)2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30223588

ABSTRACT

Dyadic interactions are ubiquitous in our lives, yet they are highly challenging to study. Many subtle aspects of coupled bodily dynamics continuously unfolding during such exchanges have not been empirically parameterized. As such, we have no formal statistical methods to describe the spontaneously self-emerging coordinating synergies within each actor's body and across the dyad. Such cohesive motion patterns self-emerge and dissolve largely beneath the awareness of the actors and the observers. Consequently, hand coding methods may miss latent aspects of the phenomena. The present paper addresses this gap and provides new methods to quantify the moment-by-moment evolution of self-emerging cohesiveness during highly complex ballet routines. We use weighted directed graphs to represent the dyads as dynamically coupled networks unfolding in real-time, with activities captured by a grid of wearable sensors distributed across the dancers' bodies. We introduce new visualization tools, signal parameterizations, and a statistical platform that integrates connectivity metrics with stochastic analyses to automatically detect coordination patterns and self-emerging cohesive coupling as they unfold in real-time. Potential applications of these new techniques are discussed in the context of personalized medicine, basic research, and the performing arts.

5.
Front Integr Neurosci ; 10: 22, 2016.
Article in English | MEDLINE | ID: mdl-27445720

ABSTRACT

BACKGROUND: There is a critical need for precision phenotyping across neurodevelopmental disorders, especially in individuals who receive a clinical diagnosis of autism spectrum disorder (ASD). Phelan-McDermid deletion syndrome (PMS) is one such example, as it has a high penetrance of ASD. At present, no biometric characterization of the behavioral phenotype within PMS exists. METHODS: We introduce a data-type and statistical framework that permits the personalized profiling of naturalistic behaviors. Walking patterns were assessed in 30 participants (16 PMS, 3 idiopathic-ASD and 11 age- and sex-matched controls). Each individual's micro-movement signatures were recorded at 240 Hz. We empirically estimated the parameters of the continuous Gamma family of probability distributions and calculated their ranges. These estimated stochastic signatures were then mapped on the Gamma plane to obtain several statistical indexes for each child. To help visualize complex patterns across the cohort, we introduce new tools that enable the assessment of connectivity and modularity indexes across the peripheral network of rotational joints. RESULTS: Typical walking signatures are absent in all children with PMS as well as in the children with idiopathic-ASD (iASD). Underlying these patterns are atypical leg rotational acceleration signatures that render participants with PMS unstable with rotations that are much faster than controls. The median values of the estimated Gamma parameters serve as a cutoff to automatically separate children with PMS 5-7 years old from adolescents with PMS 12-16 years old, the former displaying more randomness and larger noise. The fluctuations in the arm's motions during the walking also have atypical statistics that separate males from females in PMS and show higher rates of noise accumulation in idiopathic ASD (iASD) children. Despite high heterogeneity, all iASD children have excess noise, a narrow range of probability-distribution shapes across the body joints and a distinct joint network connectivity pattern. Both PMS and iASD have systemic issues with noise in micro-motions across the body with specific signatures for each child that, as a cohort, selectively deviates from controls. CONCLUSIONS: We provide a new methodology for precision behavioral phenotyping with the potential to use micro-movement output noise as a natural classifier of neurodevelopmental disorders of known etiology. This approach may help us better understand idiopathic neurodevelopmental disorders and personalize the assessments of natural movements in these populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...