Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(19): e202401940, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38408301

ABSTRACT

The artificial microenvironments inside coordination cages have gained significant attention for performing enzyme-like catalytic reactions by facilitating the formation of labile and complex molecules through a "ship-in-a-bottle" approach. Despite many fascinating examples, this approach remains scarcely explored in the context of synthesizing metallic clusters such as polyoxometalates (POMs). The development of innovative approaches to control and influence the speciation of POMs in aqueous solutions would greatly advance their applicability and could ultimately lead to the formation of elusive clusters that cannot be synthesized by using traditional methods. In this study, we employ host-guest stabilization within a coordination cage to enable a novel cavity-directed synthesis of labile POMs in aqueous solutions under mild conditions. The elusive Lindqvist [M6O19]2- (M=Mo or W) POMs were successfully synthesized at room temperature via the condensation of molybdate or tungstate building blocks within the confined cavity of a robust and water-soluble Pt6L4(NO3)12 coordination cage. Importantly, the encapsulation of these POMs enhances their stability in water, rendering them efficient catalysts for environmentally friendly and selective sulfoxidation reactions using H2O2 as a green oxidant in a pure aqueous medium. The approach developed in this paper offers a means to synthesize and stabilize the otherwise unstable metal-oxo clusters in water, which can broaden the scope of their applications.

2.
Chem Sci ; 14(20): 5405-5414, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37234890

ABSTRACT

Paving the way towards new functional materials relies increasingly on the challenging task of forming organic-inorganic hybrid compounds. In that regard, discrete atomically-precise metal-oxo nanoclusters have received increasing attention due to the wide range of organic moieties that can be grafted onto them through functionalization reactions. The Lindqvist hexavanadate family of clusters, such as [V6O13{(OCH2)3C-R}2]2- (V6-R), is particularly interesting due to the magnetic, redox, and catalytic properties of these clusters. However, compared to other metal-oxo cluster types, V6-R clusters have been less extensively explored, which is mainly due to poorly understood synthetic challenges and the limited number of viable post-functionalization strategies. In this work, we present an in-depth investigation of the factors that influence the formation of hybrid hexavanadates (V6-R HPOMs) and leverage this knowledge to develop [V6O13{(OCH2)3CNHCOCH2Cl}2]2- (V6-Cl) as a new and tunable platform for the facile formation of discrete hybrid structures based on metal-oxo clusters in relatively high yields. Moreover, we showcase the versatility of the V6-Cl platform through its post-functionalization via nucleophilic substitution with various carboxylic acids of differing complexity and with functionalities that are relevant in multiple disciplines, such as supramolecular chemistry and biochemistry. Hence, V6-Cl was shown to be a straightforward and versatile starting point for the formation of functional supramolecular structures or other hybrid materials, thereby enabling their exploration in various fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...