Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(4): 2931-2945, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38666913

ABSTRACT

Natural killer (NK) cells are crucial components of innate immunity, known for their potent tumor surveillance abilities. Chimeric antigen receptors (CARs) have shown promise in cancer targeting, but optimizing CAR designs for NK cell functionality remains challenging. CAR-NK cells have gained attention for their potential to reduce side effects and enable scalable production in cancer immunotherapy. This study aimed to enhance NK cell anti-tumor activity by incorporating PD1-synthetic Notch (synNotch) receptors. A chimeric receptor was designed using UniProt database sequences, and 3D structure models were generated for optimization. Lentiviral transduction was used to introduce PD1-Syn receptors into NK cells. The expression of PD1-Syn receptors on NK cell surfaces was assessed. Engineered NK cells were co-cultured with PDL1+ breast cancer cells to evaluate their cytotoxic activity and ability to produce interleukin-12 (IL-12) and interferon-gamma (IFNγ) upon interaction with the target cells. This study successfully expressed the PD1-Syn receptors on NK cells. CAR-NK cells secreted IL-12 and exhibited target-dependent IFNγ production when engaging PDL1+ cells. Their cytotoxic activity was significantly enhanced in a target-dependent manner. This study demonstrates the potential of synNotch receptor-engineered NK cells in enhancing anti-tumor responses, especially in breast cancer cases with high PDL1 expression.

2.
Mol Ther Oncolytics ; 23: 593-601, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34977336

ABSTRACT

This study compares the oncolytic effect of vesicular stomatitis virus (VSV) wild type and M51R M-protein on the colorectal tumors of different invasive intensity on SW480 and HCT116 cell lines and 114 fresh colorectal cancer primary cell cultures. Fresh tumor samples were divided into two groups of lower stages (I/II) and higher stages (III/IV) regarding the medical records. The presence of two mutations in the PIK3CA gene and the expression of NEBL and AKT1 genes were evaluated. The cells were transfected with a plasmid encoding VSV wild-type and M51R mutant M-protein. Results showed either wild type or M51R mutant can kill SW480 and stage I/II primary cultures while mutant M-protein had no apoptotic effects on HCT116 cells and stage III/IV primary cultures. NEBL and AKT1 expression were significantly higher in resistant cells. Elevated caspase-9 activity confirmed that the intrinsic apoptosis pathway is the reason for cell death in lower-stage cells. Different tumors from the same cancer exhibit different treatment sensitivity due to genetic difference. NEBL and AKT1 gene expression may be responsible for this difference, which may be the target of future investigations. Therefore, tumor staging should be considered in oncolytic viral treatment as an interfering factor.

3.
Int J Nanomedicine ; 15: 3791-3801, 2020.
Article in English | MEDLINE | ID: mdl-32547028

ABSTRACT

PURPOSE: Paclitaxel is a generic drug produced based on Taxol which is an extract of Taxus tree, well known for its anticancer and antibacterial effects. This study was aimed at building up an agent with the antibacterial and anticancer benefits of both the silver ions and Taxol, together with less cytotoxic effects. MATERIALS AND METHODS: Colloidal silver nanoparticles (AgNPs) were synthesized by reducing aqueous AgNO3 with aqueous Taxus leaf extract at nonphotomediated conditions, without any catalyst, template or surfactant. The AgNP production was confirmed by ultraviolet-visible (UV-VIS) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared (FTI) spectroscopy. The MTT assay for human breast cancer cells as well as the DAPI fluorescent staining microscopy tested the biocompatibility and anticancer effects of AgNPs, silver nitrate, and Taxol. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were performed to determine the shape and size of the nanoparticles. MTT assay showed the best inhibitory concentration of AgNPs on cancer cells. The antibacterial activity of the three case study materials was tested for gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) using well diffusion test. RESULTS: This work proposes more anticancer effects for AgNP made by Taxus brevifolia extract, comparing Taxol solution. IC50 was observed as 3.1 mM for Taxol while 1.5 mM for new AgNP. Moreover, Taxus showed no antibacterial effects while the new AgNP showed a dose-dependent biocompatibility along with slightly more antibacterial effects (MIC: 1.6 and 6.6mM for gram-positive and -negative bacteria, respectively) comparing with silver nitrate solution (MIC: 1.5 and 6.2 mM for gram-positive and -negative bacteria, respectively). CONCLUSION: The production of herbal-mediated silver nanoparticles may be an efficient substitution for the silver nitrate-based medicines with less side effects.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Green Chemistry Technology/methods , Metal Nanoparticles/therapeutic use , Silver/pharmacology , Taxus/chemistry , Dynamic Light Scattering , Escherichia coli/drug effects , Humans , MCF-7 Cells , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Particle Size , Plant Extracts/chemistry , Staphylococcus aureus/drug effects
4.
J Cell Biochem ; 120(4): 4732-4738, 2019 04.
Article in English | MEDLINE | ID: mdl-30644127

ABSTRACT

Saffron (Crocus sativus L.), and its main constituents, crocin, and crocetin have shown promising effects as an antileukemic agent in animal models and cell culture systems. Saffron retards the growth of cancer cells via inhibiting nucleic acid synthesis and enhancing antioxidative system. It can induce apoptosis and chemosensitivity via inhibiting multidrug resistance proteins. Saffron also induces differentiation pathways via inhibiting promyelocytic leukemia/retinoic acid receptor-α, histone deacetylase1, and tyrosyl DNA phosphodiesterase-1 as well. The present review highlights the most recent findings on the antileukemic effects of saffron and its underlying molecular targets. The emerging evidence suggests that saffron has a selective toxicity effect against leukemic cells while is safe for the normal cells.


Subject(s)
Antineoplastic Agents/pharmacology , Carotenoids/pharmacology , Crocus/chemistry , Leukemia/drug therapy , Animals , Carotenoids/chemistry , Carotenoids/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Leukemia/pathology , Leukemia/prevention & control , Molecular Targeted Therapy , Plant Extracts/pharmacology , Randomized Controlled Trials as Topic , Xenograft Model Antitumor Assays
5.
Oncolytic Virother ; 7: 95-105, 2018.
Article in English | MEDLINE | ID: mdl-30464928

ABSTRACT

PURPOSE: Colorectal cancer (CRC) is one of the most common causes of cancer death throughout the world. Replication-competent viruses, which are naturally able to infect and lyse tumor cells, seem to be promising in this field. The aim of this study was to evaluate the potential of oral poliovirus vaccine (OPV) on human CRC cells and elucidate the mechanism of apoptosis induction. MATERIALS AND METHODS: Protein and gene expression of poliovirus (PV) receptor (CD155) on four human CRC cell lines including HCT116, SW480, HT-29, and Caco-2 and normal fetal human colon (FHC) cell line as a control were examined by flow cytometry and SYBR Green Real-Time PCR, respectively. Cytotoxicity of OPV on indicated cell lines was tested using MTT assay. The ability of OPV on apoptosis induction for both intrinsic and extrinsic pathways was examined using caspase-8 and caspase-9 colorimetric assay kits. The PV propagation in mentioned cell lines was investigated, and the quantity of viral yields (cells associated and extracellular) was determined using TaqMan PCR. RESULTS: CD155 mRNA and protein were expressed significantly higher in studied CRC cell lines rather than the normal cell line (P=0). OPV induced cell death in a time- and dose-dependent manner in human CRC cells. Apoptosis through both extrinsic and intrinsic pathways was detected in CRC cells with the minimum level found in FHC. PV viral load was significantly correlated with apoptosis via extrinsic (R=0.945, P=0.0001) and intrinsic (R=0.756, P=0.001) pathways. CONCLUSION: This study suggests that OPV has potential for clinical treatment of CRC. However further studies in animal models (tumor xenografts) are needed to be certain that it is qualified enough for treatment of CRC.

6.
J Biomol Struct Dyn ; 35(2): 343-353, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26924613

ABSTRACT

Aptamers (ss-DNA or ss-RNA), also known as artificial antibodies, have been selected in vitro median to bind target molecules with high affinity and selectivity. Diazinon is one of the most widely used organophosphorus insecticides in developing and underdeveloped countries as insecticide and acaricide. Diazinon is readily absorbed from the gastrointestinal system and rapidly distributed throughout the body. Thus, the design of clinical and laboratory diagnostics using nanobiosensors is necessary. A computational approach allows us to screen or rank receptor structure and predict interaction outcomes with a deeper understanding, and it is much more cost effective than laboratory attempts. In this research, the best sequence (high affinity bind Diazinon-ssDNA) was ranked among 12 aptamers isolated from SELEX experimentation. Docking results, as the first virtual screening stage and static technique, selected frequent conformation of each aptamer. Then, the quantity and quality of aptamer-Diazinon interaction were simulated using molecular dynamics as a mobility technique. RMSD, RMSF, radius of gyration, and the number of hydrogen bonds formed between Diazinon-aptamer were monitored to assess the quantity and quality of interactions. G-quadruplex DNA aptamer (DF20) showed to be a reliable candidate for Diazinon biosensing. The apta-nanosensor designed using simulation results allowed with linearity detection in the range of .141-.65 nM and a LOD of 17.903 nM, and it was validated using a computational molecular approach.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Diazinon/chemistry , Molecular Dynamics Simulation , Nanotechnology , DNA/chemistry , Hydrogen Bonding , Insecticides/chemistry , Metal Nanoparticles , Molecular Conformation , Molecular Docking Simulation , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...