Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(5): e04060, 2020 May.
Article in English | MEDLINE | ID: mdl-32490251

ABSTRACT

An experimental study of high-density polyethylene (HDPE) composites filled with talc (0-15 wt.%) was carried out to investigate the rheological properties. The apparent melt viscosity, melt density, and die-swell ratio (B) of the composites were measured at constant shear stress and constant shear rate by using a melt flow indexer and capillary rheometer. The experimental conditions were set to a temperature range from 190 to 220 °C for both apparatuses whereas a load range from 5 to 12.16 kg was selected for melt flow indexer and shear rate range from 1 to 10000 s-1 for capillary rheometer. The initial study showed that the talc particulates did not influence the melt viscosity compared with the neat HDPE but decreased the elasticity of the polymer system. The HDPE/talc systems obeyed power-law model in shear stress-shear rate variations and were shear thinning, meanwhile, the die-swell increased with an increased wall shear rate and shear stress. The melt density of the composites increased linearly with an increase of the filler weight fraction and decreased with the increase of the testing temperature. The talc-HDPE composites showed compressible in the molten state.

2.
Bioresour Technol ; 224: 197-205, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27843088

ABSTRACT

In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH4/gVSadded/d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation.


Subject(s)
Bioreactors , Manure , Waste Disposal, Fluid/methods , Ammonia/metabolism , Biofuels , Equipment Design , Fatty Acids, Volatile/metabolism , Fermentation , Hydrogen-Ion Concentration , Methane/biosynthesis , Nitrogen/metabolism , Plant Shoots/metabolism , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...