Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eng Life Sci ; 17(3): 237-248, 2017 Mar.
Article in English | MEDLINE | ID: mdl-32624771

ABSTRACT

In the present report and for the first time in the international literature, the impact of the addition of NaCl upon growth and lipid production on the oleaginous yeast Rhodosporidium toruloides was studied. Moreover, equally for first time, lipid production by R. toruloides was performed under nonaseptic conditions. Therefore, the potentiality of R. toruloides DSM 4444 to produce lipid in media containing several initial concentrations of NaCl with glucose employed as carbon source was studied. Preliminary batch-flask trials with increasing amounts of NaCl revealed the tolerance of the strain against NaCl content up to 6.0% w/v. However, 4.0% w/v of NaCl stimulated lipid accumulation for this strain, by enhancing lipid production up to 71.3% w/w per dry cell weight. The same amount of NaCl was employed in pasteurized batch-flask cultures in order to investigate the role of the salt as bacterial inhibiting agent. The combination of NaCl and high glucose concentrations was found to satisfactorily suppress bacterial contamination of R. toruloides cultures under these conditions. Batch-bioreactor trials of the yeast in the same media with high glucose content (up to 150 g/L) resulted in satisfactory substrate assimilation, with almost linear kinetic profile for lipid production, regardless of the initial glucose concentration imposed. Finally, fed-batch bioreactor cultures led to the production of 37.2 g/L of biomass, accompanied by 64.5% w/w of lipid yield. Lipid yield per unit of glucose consumed received the very satisfactory value of 0.21 g/g, a value among the highest ones in the literature. The yeast lipid produced contained mainly oleic acid and to lesser extent palmitic and stearic acids, thus constituting a perfect starting material for "second generation" biodiesel.

2.
Eng Life Sci ; 17(3): 262-281, 2017 Mar.
Article in English | MEDLINE | ID: mdl-32624773

ABSTRACT

Oleochemical activities (e.g. biodiesel production, fat saponification) generate annually very high amounts of concentrated glycerol-containing waters (called crude glycerol) as the principal residues of these processes. Crude glycerol is an industrial residue the valorization of which attracts remarkable and constantly increasing interest. In the current investigation, biodiesel-derived glycerol was employed as substrate for yeast and fungal strains cultivated under nitrogen-limited conditions in shake flasks. Glucose was employed as reference substrate. Several yeasts (Candida diddensiae, Candida tropicalis, Pichia ciferrii, Williopsis saturnus, Candida boidinii, and Candida oleophila) rapidly assimilated glucose and converted it into ethanol, despite aerobic conditions imposed, and were Crabtree-positive. None of these yeasts produced ethanol during growth on glycerol or accumulated significant quantities of lipid during growth on glucose or glycerol. Only Rhodosporidium toruloides produced notable lipid quantities from glucose and to lesser extent from glycerol. Yarrowia lipolytica LFMB 20 produced citrate ≈58 g/L growing on high-glucose media, while on high-glycerol media ≈42 g/L citrate and ≈18 g/L mannitol. During growth on glucose/glycerol blends, glycerol was assimilated first and thereafter glucose was consumed. Fungi produced higher lipid quantities compared with yeasts. High lipid quantities were produced by Mortierella ramanniana, Mucor sp., and mainly Mortierella isabellina, with glycerol being more adequate for M. ramanniana and glucose for Mucor sp. and M. isabellina. M. isabellina ATHUM 2935 produced lipids of 8.5 g/L, 83.3% w/w in dry cell weight (DCW) and conversion yield per unit of glucose consumed ≈0.25 g/g. The respective values on glycerol were 5.4 g/L, 66.6% w/w in DCW and ≈0.22 g/g. Lipids of all microorganisms were analyzed with regards to their fatty acid composition, and M. isabellina presented the closest similitude with rapeseed oil. Crude lipids produced by this fungus and extracted with chloroform/methanol blend, were composed mostly of triacylglycerols, thus indicating that these solvents are adequate for triacylglycerol extraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...