Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 108(9): 2300-11, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25954887

ABSTRACT

The ability to control the morphologies of biomolecular aggregates is a central objective in the study of self-assembly processes. The development of predictive models offers the surest route for gaining such control. Under the right conditions, proteins will self-assemble into fibers that may rearrange themselves even further to form diverse structures, including the formation of closed loops. In this study, chicken egg white ovalbumin is used as a model for the study of fibril loops. By monitoring the kinetics of self-assembly, we demonstrate that loop formation is a consequence of end-to-end association between protein fibrils. A model of fibril formation kinetics, including end-joining, is developed and solved, showing that end-joining has a distinct effect on the growth of fibrillar mass density (which can be measured experimentally), establishing a link between self-assembly kinetics and the underlying growth mechanism. These results will enable experimentalists to infer fibrillar morphologies from an appropriate analysis of self-assembly kinetic data.


Subject(s)
Amyloid/chemistry , Ovalbumin/chemistry , Animals , Chickens , Kinetics , Polymerization
2.
Analyst ; 140(9): 3070-81, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25756329

ABSTRACT

The aggregation and deposition of α-synuclein in Lewy bodies is associated with the progression of Parkinson's disease. Here, Mass Spectrometry (MS) is used in combination with Ion Mobility (IM), chemical crosslinking and Electron Capture Dissociation (ECD) to probe transient structural elements of α-synuclein and its oligomers. Each of these reveals different aspects of the conformational heterogeneity of this 14 kDa protein. IM-MS analysis indicates that this protein is highly disordered, presenting in positive ionisation mode with a charge state range of 5 ≤z≤ 21 for the monomer, along with a collision cross section range of ∼1600 Å(2). Chemical crosslinking applied in conjunction with IM-MS captures solution phase conformational families enabling comparison with those exhibited in the gas phase. Crosslinking IM-MS identifies 3 distinct conformational families, Compact (∼1200 Å(2)), Extended (∼1500 Å(2)) and Unfolded (∼2350 Å(2)) which correlate with those observed in solution. ECD-Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (ECD-FT-ICR MS) highlights the effect of pH on α-synuclein structure, identifying the conformational flexibility of the N and C termini as well as providing evidence for structure in the core and at times the C terminus. A hypothesis is proposed for the variability displayed in the structural rearrangement of α-synuclein following changes in solution pH. Following a 120 h aggregation time course, we observe an increase in the ratio of dimer to monomer, but no gross conformational changes in either, beyond the significant variations that are observed day-to-day from this conformationally dynamic protein.


Subject(s)
Protein Aggregates , alpha-Synuclein/chemistry , Amino Acid Sequence , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Molecular Sequence Data , Protein Conformation , alpha-Synuclein/ultrastructure
3.
Anal Chem ; 86(22): 10979-91, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25353392

ABSTRACT

In the past decade, mass spectrometry (MS) coupled with electrospray ionization (ESI) has been extensively applied to the study of intact proteins and their complexes, often without the requirement of labels. Solvent conditions (for example, pH, ionic strength, and concentration) affect the observed desolvated species; the ease of altering such extrinsic factors renders ESI-MS an appropriate method by which to consider the range of conformational states that proteins may occupy, including natively folded, disordered and amyloid. Rotationally averaged collision cross sections of the ionized forms of proteins, provided by the combination of mass spectrometry and ion mobility (IM-MS), are also instructive in exploring conformational landscapes in the absence of solvent. Here, we ask the following question: "If the only technique you had was ESI-IM-MS, what information would it provide on the structural preferences of an unknown protein?" We have selected 20 different proteins, both monomeric and multimeric, ranging in mass from 2846 Da (melittin) to 150 kDa (Immunoglobulin G), and we consider how they are presented to a mass spectrometer under different solvent conditions. Mass spectrometery allows us to distinguish which of these proteins are structured (melittin, human beta defensin 1, truncated human lymphotactin, Cytochrome C, holo hemoglobin-α, ovalbumin, human transthyretin, avidin, bovine serum albumin, concanavalin, human serum amyloid protein, and Immunoglobulin G) from those that contain at least some regions of disorder (human lymphotactin, N-terminal p53, α-Synuclein, N-terminal MDM2, and p53 DNA binding domain) or denatured due to solvent conditions (ubiquitin, apo hemoglobin-α, apo hemoglobin-ß) by considering two experimental parameters: the range of charge states occupied by the protein (Δz) and the range of collision cross sections in which the protein is observed (ΔCCS). We also provide a simple model to predict the difference between the collision cross sections of the most compact and the most extended form of a given protein, based on the volume of the amino acids it contains. We compare these calculated parameters with experimental values. In addition, we consider the occupancy of conformations based on the intensities of ions in the mass spectra. This allows us to qualitatively predict the potential energy landscape of each protein. Our empirical approach to assess order or disorder is shown to be more accurate than the use of charge hydropathy plots, which are frequently used to predict disorder, and could provide an initial route to characterization. Finally, we present an ESI-IM-MS methodology to determine if a given protein is structured or disordered.


Subject(s)
Mass Spectrometry , Protein Conformation , Proteins/analysis , Proteins/chemistry
4.
Chem Commun (Camb) ; 50(2): 198-200, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24217599

ABSTRACT

The helix-forming character of a model decapeptide, L4PL4K, is determined in the absence of solvent using ion mobility mass spectrometry, electron capture dissociation and molecular mechanics simulations. Unusual ECD fragmentation patterns dominated by b ions are attributed to helix formation upon electron capture and as a signature of conformational dynamics.


Subject(s)
Oligopeptides/chemistry , Amino Acid Sequence , Gases/chemistry , Mass Spectrometry , Molecular Dynamics Simulation , Protein Structure, Secondary
5.
Analyst ; 136(17): 3446-52, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21701716

ABSTRACT

Gas phase methodologies are increasingly used to study the structure of proteins and peptides. A challenge to the mass spectrometrist is to preserve the structure of the system of interest intact and unaltered from solution into the gas phase. Small peptides are very flexible and can present a number of conformations in solution. In this work we examine Melittin a 26 amino acid peptide that forms the active component of honey bee venom. Melittin is haemolytic and has been shown to form an α-helical tetrameric structure by X-ray crystallography [M. Gribskov et al., The RCSB Protein Data Bank, 1990] and to be helical in high concentrations of methanol. Here we use ion mobility mass spectrometry, molecular dynamics and gas-phase HDX to probe its structure in the gas phase and specifically interrogate whether the helical form can be preserved. All low energy calculated structures possess some helicity. In our experiments we examine the peptide following nano-ESI from solutions with varying methanol content. Ion mobility gives collision cross sections (CCS) that compare well with values found from molecular modelling and from other reported structures, but with inconclusive results regarding the effect of solvent. There is only a slight increase in CCS with charge, showing minimal coloumbically driven unfolding. HDX supports preservation of some helical content into the gas phase and again shows little difference in the exchange rates of species sprayed from different solvents. The [M + 3H](3+) species has two exchanging populations both of which exhibit faster exchange rates than observed for the [M + 2H](2+) species. One interpretation for these results is that the time spent being analysed is sufficient for this peptide to form a helix in the 'ultimate' hydrophobic environment of a vacuum.


Subject(s)
Bees/chemistry , Honey/analysis , Melitten/chemistry , Amino Acid Sequence , Animals , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary
7.
Phys Chem Chem Phys ; 12(14): 3589-96, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20336257

ABSTRACT

Due to the ubiquitous presence of polysaccharide moieties on bacterial surfaces, it is hypothesised that a peptide-saccharide interaction plays a key role during the recognition of invading microorganisms by beta-defensins. We have employed different gas-phase methods to investigate these interactions. This manuscript describes: an MS-based titration assay measuring the gas-phase binding of ten beta-defensin related peptides to a sulfated disaccharide derived from heparin (HDD); ion mobility-mass spectrometry-determined collision cross sections of 3 peptides (both free and binding HDD); and results from molecular modelling with the aim of reconciling some of our experimental observations. We observe a clear qualitative correlation between the antimicrobial activity of several beta-defensins and related peptides and their gas-phase binding to a heparin-derived disaccharide (HDD). Four of the ten peptides show >100 micromolar K(d) values with HDD, and no bacteriocidal activity, illustrating that HDD binding correlates with peptide antimicrobial activity. For five of the remaining six peptides, bacteriocidal activity was re-measured with HDD present. For the peptides containing intramolecular disulfide bonds in two out of five, bacteriocidal activity was reduced approximately 10-fold; for the remaining three peptides, which lack intramolecular disulfide bonds, HDD addition had little effect on bacteriocidal activity. The latter results are suggested to arise from the greater degree of flexibility imparted by the removal of disulfide bonds giving the peptides the ability to envelope HDD and assume a "defensin-like" fold. Thus gas-phase analysis is put forward as a powerful tool for assessing the properties of antimicrobial peptides providing valuable insights in the mechanism of antimicrobial inhibition.


Subject(s)
Anti-Infective Agents/chemistry , Defensins/chemistry , Disaccharides/chemistry , Heparin/chemistry , Peptides/chemistry , Binding Sites , Gases , Mass Spectrometry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...