Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 8(10): e1002707, 2012.
Article in English | MEDLINE | ID: mdl-23071428

ABSTRACT

Neuroimaging research has largely focused on the identification of associations between brain activation and specific mental functions. Here we show that data mining techniques applied to a large database of neuroimaging results can be used to identify the conceptual structure of mental functions and their mapping to brain systems. This analysis confirms many current ideas regarding the neural organization of cognition, but also provides some new insights into the roles of particular brain systems in mental function. We further show that the same methods can be used to identify the relations between mental disorders. Finally, we show that these two approaches can be combined to empirically identify novel relations between mental disorders and mental functions via their common involvement of particular brain networks. This approach has the potential to discover novel endophenotypes for neuropsychiatric disorders and to better characterize the structure of these disorders and the relations between them.


Subject(s)
Brain Mapping/methods , Brain/physiology , Brain/physiopathology , Cognition/physiology , Mental Disorders/physiopathology , Mental Processes/physiology , Adult , Cluster Analysis , Computational Biology , Data Mining , Humans , Models, Neurological , Phenotype , Random Allocation
2.
Front Neuroinform ; 5: 17, 2011.
Article in English | MEDLINE | ID: mdl-21922006

ABSTRACT

Cognitive neuroscience aims to map mental processes onto brain function, which begs the question of what "mental processes" exist and how they relate to the tasks that are used to manipulate and measure them. This topic has been addressed informally in prior work, but we propose that cumulative progress in cognitive neuroscience requires a more systematic approach to representing the mental entities that are being mapped to brain function and the tasks used to manipulate and measure mental processes. We describe a new open collaborative project that aims to provide a knowledge base for cognitive neuroscience, called the Cognitive Atlas (accessible online at http://www.cognitiveatlas.org), and outline how this project has the potential to drive novel discoveries about both mind and brain.

3.
Top Cogn Sci ; 2(4): 678-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-25164049

ABSTRACT

The goal of cognitive neuroscience is to map mental functions onto their neural substrates. We argue here that this goal requires a formal approach to the characterization of mental processes, and we present one such approach by using ontologies to describe cognitive processes and their relations. Using a classifier analysis of data from the BrainMap database, we examine the concept of "cognitive control" to determine whether the proposed component processes in this domain are mapped to independent neural systems. These results show that some subcomponents can be uniquely classified, whereas others cannot, suggesting that these different components may vary in their ontological reality. We relate these concepts to the broader emerging field of phenomics, which aims to characterize cognitive phenotypes on a global scale.


Subject(s)
Biological Ontologies , Brain Mapping , Executive Function/physiology , Executive Function/classification , Humans
4.
Vision Res ; 50(3): 284-99, 2010 Feb 08.
Article in English | MEDLINE | ID: mdl-19852979

ABSTRACT

Models of contour interpolation have been proposed for illusory contour interpolation but seldom for interpolation of occluded contours. The identity hypothesis (Kellman & Loukides, 1987; Kellman & Shipley, 1991) posits that an early interpolation mechanism is shared by interpolated contours that are ultimately perceived as either illusory or occluded. Here we propose a model of such a unified interpolation mechanism for illusory and occluded contours, building on the framework established in Heitger, von der Heydt, Peterhans, Rosenthaler, and Kubler (1998). We show that a single, neurally plausible mechanism that is consistent with the identity hypothesis also generates contour interpolations in agreement with perception for cases of transparency, self-splitting objects, interpolation with mixed boundary assignment, and "quasimodal" interpolations. Limiting cases for this local, feed-forward approach are presented, demonstrating that both early, local interpolation mechanisms and non-local scene constraints are necessary for describing the perception of interpolated contours.


Subject(s)
Models, Theoretical , Optical Illusions , Visual Perception , Algorithms , Humans , Photic Stimulation/methods
5.
Cogn Neuropsychiatry ; 14(4-5): 419-50, 2009.
Article in English | MEDLINE | ID: mdl-19634038

ABSTRACT

Now that genome-wide association studies (GWAS) are dominating the landscape of genetic research on neuropsychiatric syndromes, investigators are being faced with complexity on an unprecedented scale. It is now clear that phenomics, the systematic study of phenotypes on a genome-wide scale, comprises a rate-limiting step on the road to genomic discovery. To gain traction on the myriad paths leading from genomic variation to syndromal manifestations, informatics strategies must be deployed to navigate increasingly broad domains of knowledge and help researchers find the most important signals. The success of the Gene Ontology project suggests the potential benefits of developing schemata to represent higher levels of phenotypic expression. Challenges in cognitive ontology development include the lack of formal definitions of key concepts and relations among entities, the inconsistent use of terminology across investigators and time, and the fact that relations among cognitive concepts are not likely to be well represented by simple hierarchical "tree" structures. Because cognitive concept labels are labile, there is a need to represent empirical findings at the cognitive test indicator level. This level of description has greater consistency, and benefits from operational definitions of its concepts and relations to quantitative data. Considering cognitive test indicators as the foundation of cognitive ontologies carries several implications, including the likely utility of cognitive task taxonomies. The concept of cognitive "test speciation" is introduced to mark the evolution of paradigms sufficiently unique that their results cannot be "mated" productively with others in meta-analysis. Several projects have been initiated to develop cognitive ontologies at the Consortium for Neuropsychiatric Phenomics (www.phenomics.ucla.edu), in the hope that these ultimately will enable more effective collaboration, and facilitate connections of information about cognitive phenotypes to other levels of biological knowledge. Several free web applications are available already to support examination and visualisation of cognitive concepts in the literature (PubGraph, PubAtlas, PubBrain) and to aid collaborative development of cognitive ontologies (Phenowiki and the Cognitive Atlas). It is hoped that these tools will help formalise inference about cognitive concepts in behavioural and neuroimaging studies, and facilitate discovery of the genetic bases of both healthy cognition and cognitive disorders.


Subject(s)
Cognition Disorders/genetics , Cognition Disorders/psychology , Cognition/physiology , Mental Disorders/genetics , Mental Disorders/psychology , Nervous System Diseases/genetics , Nervous System Diseases/psychology , Humans , Phenotype , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...