Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589935

ABSTRACT

In this study, the photophysical properties of oxazole derivatives such as 5-(furan-2-yl) -4-tosyloxazole (OX-1) and 5-(2-bromothiazol-4-yl)-4-tosyloxazoles (OX-2) were investigated using theoretical and experimental techniques. The ground and excited state dipole moments were empirically obtained utilising the solvatochromic shift technique and several solvatochromic correlations such as Lippert's, Bakhshiev's, KawskiChamma- Viallet's, and solvent polarity equations. The ground state dipole moments, HOMO-LUMO and molecule electrostatic potential map were also computed using ab initio calculations and evaluated using Gaussian 09 W software. Furthermore, spectroscopic interactions between newly synthesised dyes (OX-1 and OX-2) and freshly synthesised silver nanoparticles (size 40 nm) were studied. Increased absorbance and widening of absorption spectra for both dyes in the presence of varied quantities of silver nanoparticles show the potential of dye-nanoparticle interactions. Fluorescence quenching has been detected for both dyes in the presence of colloidal silver nanoparticles, indicating dynamic quenching, and a significant overlap between the absorption and emission spectra of the silver nanoparticle reveals that fluorescence quenching is also due to energy transfer.

2.
Langmuir ; 25(21): 12729-35, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19711933

ABSTRACT

Herein, we report the ambient synthesis of CdSe nanoparticles of widely tunable particle size by a solution route. The proposed protocol uses hydrazine hydrate to form an air-stable complex of selenium. These nanoparticles are characterized by X-ray diffraction, FTIR, optical absorption, photoluminescence, and transmission electron microcopy measurements. By varying the molarities of Cd(2+) and Se(2-) ions in solution with 3-mercaptopropionic acid as the capping ligand, the method permits us to synthesize nanoparticles of size ranging from 1.58 to 3.42 nm (estimated from optical absorption edge measurements) by controlling the annealing time of the starting colloid at 100 degrees C. The extracted quantum dots are of high quality (40% photoluminescence quantum yield) and exhibit colors ranging from deep blue to red. The resulting colloids are very stable, and no precipitate is observed over a period of 6 months. Thus, the method is simple and easily scalable to synthesize fluorescent CdSe nanoparticles.

3.
Langmuir ; 25(5): 3305-9, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19437791

ABSTRACT

Here, we report a simple method of forming electrical contacts on soft surfaces of organic monolayers and organically capped nanoparticles. It is based on the lift of predefined contacts of silver paste on a water surface and their pickup and float on a soft surface by capillary force. Three different surfaces of silicon--hydrogen terminated, covalently bonded organic molecules, and a thin film of organically capped CdSe nanoparticles--were used to constitute electronic junctions by lift and float of individual contacts. Charge transport measurements clearly demonstrate that these junctions are free from shorting and wrinkling of the top contact and damage of molecular films. Hence, the method is simple, effective, nondestructive, and economical to form electronic junctions on molecular surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...