Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(1): 352-365, 2023 01.
Article in English | MEDLINE | ID: mdl-34821210

ABSTRACT

Inducing the bio-functionalization in noble metal nanoparticles like gold, silver, zinc is very important to accomplish their biocompatibility in biological activities. These metal nanoparticles are being rigorously used in bio-sensing tools keeping their remarkable properties in mind. Amongst the serum albumins, the most ample proteins in plasma are bovine serum albumin and human serum albumin. A broad variety of physiological functions of bovine serum albumin has made it a model protein for bio-functionalization. In the present study, ZnO/Ag nanoparticles were synthesized and characterized by SEM and XRD techniques and the interaction between bovine serum albumin and ZnO/Ag nanoparticles was evaluated by employing ultra-violet, steady state fluorescence, circular dichroism and FTIR spectroscopic techniques. Upon the excitation of bovine serum albumin, ZnO/Ag nanoparticles appreciably reduced the intrinsic fluorescence intensity of bovine serum albumin. The number of binding locations and apparent binding constants at different temperatures were calculated by the fluorescence quenching method. Static mechanism of quenching and conformational modifications in bovine serum albumin were also found.Communicated by Ramaswamy H. Sarma.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Humans , Serum Albumin, Bovine/chemistry , Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Protein Binding , Silver/chemistry , Circular Dichroism , Spectrometry, Fluorescence/methods , Binding Sites , Thermodynamics
2.
Sci Rep ; 10(1): 4828, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32179797

ABSTRACT

This paper reports the potential application of cadmium selenide (CdSe) quantum dots (QDs) in improving the microelectronic characteristics of Schottky barrier diode (SBD) prepared from a semiconducting material poly-(9,9-dioctylfluorene) (F8). Two SBDs, Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO, are fabricated by spin coating a 10 wt% solution of F8 in chloroform and 10:1 wt% solution of F8:CdSe QDs, respectively, on a pre-deposited poly(3-hexylthiophene) (P3HT) on indium tin oxide (ITO) substrate. To study the electronic properties of the fabricated devices, current-voltage (I-V) measurements are carried out at 25 °C in dark conditions. The I-V curves of Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO SBDs demonstrate asymmetrical behavior with forward bias current rectification ratio (RR) of 7.42 ± 0.02 and 142 ± 0.02, respectively, at ± 3.5 V which confirm the formation of depletion region. Other key parameters which govern microelectronic properties of the fabricated devices such as charge carrier mobility (µ), barrier height (ϕb), series resistance (Rs) and quality factor (n) are extracted from their corresponding I-V characteristics. Norde's and Cheung functions are also applied to characterize the devices to study consistency in various parameters. Significant improvement is found in the values of Rs, n, and RR by 3, 1.7, and 19 times, respectively, for Ag/F8-CdSe QDs/P3HT/ITO SBD as compared to Ag/F8/P3HT/ITO. This enhancement is due to the incorporation of CdSe QDs having 3-dimensional quantum confinement and large surface-to-volume area. Poole-Frenkle and Richardson-Schottky conduction mechanisms are also discussed for both of the devices. Morphology, optical bandgap (1.88 ± 0.5 eV) and photoluminescence (PL) spectrum of CdSe QDs with a peak intensity at 556 nm are also reported and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...