Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 92(8): 959-974, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38602129

ABSTRACT

Peptides are promising therapeutic agents for various biological targets due to their high efficacy and low toxicity, and the design of peptide ligands with high binding affinity to the target of interest is of utmost importance in peptide-based drug design. Introducing a conformational constraint to a flexible peptide ligand using a side-chain lactam-bridge is a convenient and efficient method to improve its binding affinity to the target. However, in general, such a small structural modification to a flexible ligand made with the intent of lowering the configurational entropic penalty for binding may have unintended consequences in different components of the binding enthalpy and entropy, including the configurational entropy component, which are still not clearly understood. Toward probing this, we examine different components of the binding enthalpy and entropy as well as the underlying structure and dynamics, for a side-chain lactam-bridged peptide inhibitor and its flexible analog forming complexes with vascular endothelial growth factor (VEGF), using all-atom molecular dynamics simulations. It is found that introducing a side-chain lactam-bridge constraint into the flexible peptide analog led to a gain in configurational entropy change but losses in solvation entropy, solute internal energy, and solvation energy changes upon binding, pinpointing the opportunities and challenges in drug design. The present study features an interplay between configurational and solvation entropy changes, as well as the one between binding enthalpy and entropy, in ligand-target binding upon imposing a conformational constraint into a flexible ligand.


Subject(s)
Angiogenesis Inhibitors , Entropy , Lactams , Molecular Dynamics Simulation , Protein Binding , Thermodynamics , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/metabolism , Lactams/chemistry , Lactams/metabolism , Ligands , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Humans , Peptides/chemistry , Peptides/metabolism , Binding Sites
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612876

ABSTRACT

Vascular endothelial growth factor 165 (VEGF165) is a prominent isoform of the VEGF-A protein that plays a crucial role in various angiogenesis-related diseases. It is homodimeric, and each of its monomers is composed of two domains connected by a flexible linker. DNA aptamers, which have emerged as potent therapeutic molecules for many proteins with high specificity and affinity, can also work for VEGF165. A DNA aptamer heterodimer composed of monomers of V7t1 and del5-1 connected by a flexible linker (V7t1:del5-1) exhibits a greater binding affinity with VEGF165 compared to either of the two monomers alone. Although the structure of the complex formed between the aptamer heterodimer and VEGF165 is unknown due to the highly flexible linkers, gaining structural information will still be valuable for future developments. Toward this end of accessing structural information, we adopt an ensemble docking approach here. We first obtain an ensemble of structures for both VEGF165 and the aptamer heterodimer by considering both small- and large-scale motions. We then proceed through an extraction process based on ensemble docking, molecular dynamics simulations, and binding free energy calculations to predict the structures of the VEGF165/V7t1:del5-1 complex. Through the same procedures, we reach a new aptamer heterodimer that bears a locked nucleic acid-modified counterpart of V7t1, namely RNV66:del5-1, which also binds well with VEGF165. We apply the same protocol to the monomeric units V7t1, RNV66, and del5-1 to target VEGF165. We observe that V7t1:del5-1 and RNV66:del5-1 show higher binding affinities with VEGF165 than any of the monomers, consistent with experiments that support the notion that aptamer heterodimers are more effective anti-VEGF165 aptamers than monomeric aptamers. Among the five different aptamers studied here, the newly designed RNV66:del5-1 shows the highest binding affinity with VEGF165. We expect that our ensemble docking approach can help in de novo designs of homo/heterodimeric anti-angiogenic drugs to target the homodimeric VEGF165.


Subject(s)
Aptamers, Nucleotide , Vascular Endothelial Growth Factor A , Angiogenesis Inhibitors , Molecular Dynamics Simulation , Motion
3.
PLoS One ; 18(2): e0281781, 2023.
Article in English | MEDLINE | ID: mdl-36795710

ABSTRACT

The vascular endothelial growth factor receptor 2 (VEGFR-2) is a member of receptor tyrosine kinases (RTKs) and is a dimeric membrane protein that functions as a primary regulator of angiogenesis. As is usual with RTKs, spatial alignment of its transmembrane domain (TMD) is essential toward VEGFR-2 activation. Experimentally, the helix rotations within TMD around their own helical axes are known to participate importantly toward the activation process in VEGFR-2, but the detailed dynamics of the interconversion between the active and inactive TMD forms have not been clearly elucidated at the molecular level. Here, we attempt to elucidate the process by using coarse grained (CG) molecular dynamics (MD) simulations. We observe that inactive dimeric TMD in separation is structurally stable over tens of microseconds, suggesting that TMD itself is passive and does not allow spontaneous signaling of VEGFR-2. By starting from the active conformation, we reveal the mechanism of TMD inactivation through analyzing the CG MD trajectories. We observe that interconversions between a left-handed overlay and a right-handed one are essential for the process of going from an active TMD structure to the inactive form. In addition, our simulations find that the helices can rotate properly when the overlaying structure of the helices interconverts and when the crossing angle of the two helices changes by larger than ~40 degrees. As the activation right after the ligand attachment on VEGFR-2 will take place in the reverse manner of this inactivation process, these structural aspects will also appear importantly for the activation process. The rather large change in helix configuration for activation also explains why VEGFR-2 rarely self-activate and how the activating ligand structurally drive the whole VEGFR-2. This mechanism of TMD activation / inactivation within VEGFR-2 may help in further understanding the overall activation processes of other RTKs.


Subject(s)
Molecular Dynamics Simulation , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor Receptor-2/metabolism , Ligands , Vascular Endothelial Growth Factor A , Protein Domains
4.
J Comput Chem ; 44(11): 1129-1137, 2023 04 30.
Article in English | MEDLINE | ID: mdl-36625560

ABSTRACT

Macugen is a therapeutic RNA aptamer against vascular endothelial growth factor (VEGF)-165, the VEGF isoform primarily responsible for angiogenesis. It has been reported that Macugen inhibits angiogenesis by specifically binding to the heparin binding domain (HBD) of VEGF165. The mechanism of the molecular recognition between HBD and Macugen is investigated here using all-atom molecular dynamics simulations. We find that Macugen recognizes HBD by an induced-fit mechanism with major conformational changes in Macugen and almost no changes in the structure of HBD, whereas HBD recognizes Macugen by a conformational selection mechanism.


Subject(s)
Aptamers, Nucleotide , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/chemistry , Protein Structure, Tertiary , Aptamers, Nucleotide/chemistry , Models, Molecular , Nucleic Acid Conformation , Computational Biology , Protein Binding
5.
Biophys J ; 120(21): 4786-4797, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34555359

ABSTRACT

Spontaneous unidirectional, or vectorial, insertion of transmembrane peptides is a fundamental biophysical process for toxin and viral actions. Polytheonamide B (pTB) is a potent cytotoxic peptide with a ß6.3-helical structure. Previous experimental studies revealed that the pTB inserts into the membrane in a vectorial fashion and forms a channel with its single molecular length long enough to span the membrane. Also, molecular dynamics simulation studies demonstrated that the pTB is prefolded in aqueous solution. These are unique features of pTB because most of the peptide toxins form channels through oligomerization of transmembrane helices. Here, we performed all-atom molecular dynamics simulations to examine the dynamic mechanism of the vectorial insertion of pTB, providing underlying elementary processes of the membrane insertion of a prefolded single transmembrane peptide. We find that the insertion of pTB proceeds with only the local lateral compression of the membrane in three successive phases: "landing," "penetration," and "equilibration" phases. The free energy calculations using the replica-exchange umbrella sampling simulations present an energy cost of 4.3 kcal/mol at the membrane surface for the membrane insertion of pTB from bulk water. The trajectories of membrane insertion revealed that the insertion process can occur in two possible pathways, namely "trapped" and "untrapped" insertions; in some cases, pTB is trapped in the upper leaflet during the penetration phase. Our simulations demonstrated the importance of membrane anchoring by the hydrophobic N-terminal blocking group in the landing phase, leading to subsequent vectorial insertion.


Subject(s)
Intracellular Signaling Peptides and Proteins , Peptides , Membranes , Molecular Dynamics Simulation
6.
Biophys J ; 119(4): 831-842, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32730791

ABSTRACT

Histidine state (protonated or δ or ε tautomer) has been considered the origin of abnormal misfolding and aggregation of ß-amyloid (Aß). Our previous studies reported that the δδδ isomer of Aß (1-40) has a greater propensity for ß-sheet conformation compared to other isomers. However, direct proof of the tautomeric effect has not been reported. In this context, we calculated histidine site-specific two-dimensional infrared spectroscopy of the δδδ, εεε, and πππ (all protonated histidine) systems within the framework of classical molecular dynamics simulations aiming at connecting our previous results with the current experimental observations. Our results showed that ß-sheet formation is favored for the δδδ and πππ tautomers compared with the εεε tautomer, consistent with our previous studies. This result was further supported by contact map analyses and the strength of dipole coupling between the amide-I bonds of each residue. The two-dimensional infrared diagonal trace for each tautomer included three distinctive spectrally resolvable peaks near 1680, 1686, and 1693 cm-1, as was also observed for histidine dipeptides. However, the peak positions at His6, His13, and His14 did not show a consensus trend with the histidine or protonation state but were instead affected by the presence of surrounding hydrogen bonds. Our study provides a deeper insight into the influence of tautomerism and protonation of histidine residues in Aß (1-40) on amyloid misfolding and provides a connection between our previous simulations and experimental observations.


Subject(s)
Amyloid beta-Peptides , Histidine , Amyloid , Molecular Dynamics Simulation , Protein Conformation, beta-Strand
7.
ACS Omega ; 3(7): 7542-7554, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458910

ABSTRACT

Gas-phase spectroscopic detection of tiny carbon clusters is a recent success story in the area of carbon cluster research. However, experimental production and isolation of these clusters are extremely difficult because of their high reactivity. One possibility to isolate the generated clusters would be to deposit them on graphene and to desorb them for subsequent use. One of the pertinent questions toward realizing this would be the energetics of the adsorption process. Therefore, in this work, the energetics for the adsorption of the monocyclic carbon rings (C n with n = 10, 12, 14, 16, 18, 20, and 22) on a graphene sheet are investigated using the analytical approaches, developed earlier by Hill and co-workers. The adsorption process here is driven by the noncovalent interactions between the carbon rings and the graphene sheet. The analyses of the interaction energies as a function of both the vertical distance Z and the rotational angle ϕ are performed in order to determine the preferred orientations, equilibrium positions, and binding energies for the adsorption of various carbon rings on graphene. We find that the preferred orientation of the rings with respect to the graphene sheet is the parallel orientation. The results from continuum, discrete-continuum, and discrete models are in good agreement. Further, computations using density functional theory and quantum mechanics/molecular mechanics approaches are performed, and comparisons of the computed energetics with the data from the models are reported. Finally, we highlight the scope and the limitations of the analytical models.

8.
Phys Chem Chem Phys ; 20(5): 3334-3348, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29199752

ABSTRACT

The ß6.3-helical channel of the marine cytotoxic peptide, polytheonamide B (pTB), is examined in water, the POPC bilayer, and a 1 : 1 chloroform/methanol mixture using all-atom molecular dynamics simulations. The structures and fluctuations of the ß6.3-helix of pTB are investigated in the three environments. The average structure of pTB calculated in the mixed solvent is in good agreement with the NMR-resolved structure in the mixed solvent, indicating the validity of the parameters used for the non-standard groups in pTB. The configuration and dynamics of solvent molecules inside the pore are examined in detail. It is found that the motions of methanol molecules inside the pore are not correlated because of the absence of strong hydrogen bonds (HBs) between adjacent methanol molecules. On the other hand, the motions of water molecules inside the pore are highly correlated, both translationally and orientationally, due to the strong HBs between neighboring water molecules. It is suggested that the collective behavior of water molecules inside the pore in the membrane is crucial for the permeation of ions through the pTB channel.

SELECTION OF CITATIONS
SEARCH DETAIL
...