Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
JACC CardioOncol ; 5(5): 570-590, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37969643

ABSTRACT

Over the past decade, the treatment landscape of chronic lymphocytic leukemia (CLL) has dramatically changed, shifting from cytotoxic chemotherapy to targeted therapies. Bruton's tyrosine kinase (BTK) inhibitors have revolutionized the treatment of CLL and are increasingly applied in many other malignancies. However, ibrutinib, the first BTK inhibitor approved, is associated with serious toxicities, including atrial fibrillation in up to 38% of patients, ventricular arrhythmias, and other cardiovascular toxicities. Emerging data suggest several newer BTK inhibitors (eg, acalabrutinib, zanubrutinib) are still associated with cardiotoxic risks. This review examines the current state of evidence, including incidence rates, risk factors, mechanisms, and management strategies of cardiovascular toxicities with BTK inhibitors and other CLL therapies. We specifically focus on atrial fibrillation, ventricular arrhythmias/sudden death, hypertension, heart failure, bleeding, and stroke. We also touch on other emerging BTK therapies (eg, pirtobrutinib). Finally, we highlight key unanswered questions and future directions of research.

2.
J Neuroimmunol ; 374: 578009, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36508930

ABSTRACT

Central nervous system (CNS) tumors are the most common type of solid tumors in children and the leading cause of cancer deaths in ages 0-14. Recent advances in the field of tumor biology and immunology have underscored the disparate nature of these distinct CNS tumor types. In this review, we briefly introduce pediatric CNS tumors and discuss various components of the TME, with a particular focus on myeloid cells. Although most studies regarding myeloid cells have been done on adult CNS tumors and animal models, we discuss the role of myeloid cell heterogeneity in pediatric CNS tumors and describe how these cells may contribute to tumorigenesis and treatment response. In addition, we present studies within the last 5 years that highlight human CNS tumors, the utility of various murine CNS tumor models, and the latest multi-dimensional tools that can be leveraged to investigate myeloid cell infiltration in young adults and children diagnosed with select CNS tumors.


Subject(s)
Central Nervous System Neoplasms , Tumor Microenvironment , Child , Humans , Animals , Mice , Infant, Newborn , Infant , Child, Preschool , Adolescent , Central Nervous System Neoplasms/therapy , Central Nervous System/pathology , Myeloid Cells/metabolism
3.
Blood ; 140(20): 2142-2145, 2022 11 17.
Article in English | MEDLINE | ID: mdl-35917449

ABSTRACT

Acalabrutinib, a next-generation Bruton's tyrosine kinase inhibitor (BTKi), associates with dramatic efficacy against B-cell malignancies. Recently, unexplained ventricular arrhythmias (VAs) with next-generation BTKi-therapy have been reported. Yet, whether acalabrutinib associates with VAs in long-term follow-up is unknown. Leveraging a large-cohort of 290 consecutive B-cell malignancy patients treated with acalabrutinib from 2014 to 2020, we assessed the incidence of VAs. The primary-endpoint was incident VA development (ventricular fibrillation, ventricular tachycardia, and symptomatic premature ventricular contractions). Probability-scores were assessed to determine likelihood of acalabrutinib-association. Incident rates as function of time-on-therapy were calculated. Weighted average observed incidence rates were compared with expected population rates using relative-risks. Absolute excess risk (AER) for acalabrutinib-associated VAs was estimated. Over 1063 person-years of follow-up, there were 8 cases of incident-VAs, including 6 in those without coronary disease (CAD) or heart failure (HF) and 1 sudden-death; median time-to-event 14.9 months. Among those without prior ibrutinib-use, CAD, or HF, the weighted average incidence was 394 per 100 000 person years compared with a reported incidence of 48.1 among similar-aged non-BTKi-treated subjects (relative risk, 8.2; P < .001; AER, 346). Outside of age, no cardiac or electrocardiographic variables associated with VA development. Collectively, these data suggest VAs may be a class-effect of BTKi therapies.


Subject(s)
Benzamides , Heart Failure , Humans , Aged , Pyrazines , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/epidemiology , Death, Sudden
4.
J Hematol Oncol ; 15(1): 92, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35836241

ABSTRACT

BACKGROUND: Post-market analyses revealed unanticipated links between first-generation Bruton's tyrosine kinase inhibitor (BTKi) therapy, ibrutinib, and profound early hypertension. Yet, whether this is seen with novel selective second (next)-generation BTKi therapy, acalabrutinib, is unknown. METHODS: Leveraging a large cohort of consecutive B cell cancer patients treated with acalabrutinib from 2014 to 2020, we assessed the incidence and ramifications of new or worsened hypertension [systolic blood pressure (SBP) ≥ 130 mmHg] after acalabrutinib initiation. Secondary endpoints were major cardiovascular events (MACE: arrhythmias, myocardial infarction, stroke, heart failure, cardiac death) and disease progression. Observed incident hypertension rates were compared to Framingham heart-predicted and ibrutinib-related rates. Multivariable regression and survival analysis were used to define factors associated with new/worsened hypertension and MACE, and the relationship between early SBP increase and MACE risk. Further, the effect of standard antihypertensive classes on the prevention of acalabrutinib-related hypertension was assessed. RESULTS: Overall, from 280 acalabrutinib-treated patients, 48.9% developed new/worsened hypertension over a median of 41 months. The cumulative incidence of new hypertension by 1 year was 53.9%, including 1.7% with high-grade (≥ 3) hypertension. Applying the JNC 8 cutoff BP of ≥ 140/90 mmHg, the observed new hypertension rate was 20.5% at 1 year, > eightfold higher than the Framingham-predicted rate of 2.4% (RR 8.5, P < 0.001), yet 34.1% lower than ibrutinib (12.9 observed-to-expected ratio, P < 0.001). In multivariable regression, prior arrhythmias and Black ancestry were associated with new hypertension (HR 1.63, HR 4.35, P < 0.05). The degree of SBP rise within 1 year of treatment initiation predicted MACE risk (42% HR increase for each + 5 mmHg SBP rise, P < 0.001). No single antihypertensive class prevented worsened acalabrutinib-related hypertension. CONCLUSIONS: Collectively, these data suggest that hypertension may be a class effect of BTKi therapies and precedes major cardiotoxic events.


Subject(s)
Hypertension , Myocardial Infarction , Stroke , Antihypertensive Agents/therapeutic use , Blood Pressure , Humans , Hypertension/chemically induced , Hypertension/epidemiology , Stroke/epidemiology , Stroke/etiology , Stroke/prevention & control
5.
Nat Biomed Eng ; 6(2): 157-167, 2022 02.
Article in English | MEDLINE | ID: mdl-35190679

ABSTRACT

Systemically delivered lipid nanoparticles are preferentially taken up by hepatocytes. This hinders the development of effective, non-viral means of editing genes in tissues other than the liver. Here we show that lipid-nanoparticle-mediated gene editing in the lung and spleen of adult mice can be enhanced by reducing Cas9-mediated insertions and deletions in hepatocytes via oligonucleotides disrupting the secondary structure of single-guide RNAs (sgRNAs) and also via their combination with short interfering RNA (siRNA) targeting Cas9 messenger RNA (mRNA). In SpCas9 mice with acute lung inflammation, the systemic delivery of an oligonucleotide inhibiting an sgRNA targeting the intercellular adhesion molecule 2 (ICAM-2), followed by the delivery of the sgRNA, reduced the fraction of ICAM-2 indels in hepatocytes and increased that in lung endothelial cells. In wild-type mice, the lipid-nanoparticle-mediated delivery of an inhibitory oligonucleotide, followed by the delivery of Cas9-degrading siRNA and then by Cas9 mRNA and sgRNA, reduced the fraction of ICAM-2 indels in hepatocytes but not in splenic endothelial cells. Inhibitory oligonucleotides and siRNAs could be used to modulate the cell-type specificity of Cas9 therapies.


Subject(s)
Gene Editing , Nanoparticles , Animals , Antigens, CD , CRISPR-Cas Systems , Cell Adhesion Molecules/genetics , Endothelial Cells , Lipids/chemistry , Liposomes , Liver , Lung , Mice , Nanoparticles/chemistry , Spleen
6.
Adv Mater ; 32(1): e1904905, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31743531

ABSTRACT

Clinical mRNA delivery remains challenging, in large part because how physiology alters delivery in vivo remains underexplored. For example, mRNA delivered by lipid nanoparticles (LNPs) is being considered to treat inflammation, but whether inflammation itself changes delivery remains understudied. Relationships between immunity, endocytosis, and mRNA translation lead to hypothesize that toll-like receptor 4 (TLR4) activation reduced LNP-mediated mRNA delivery. Therefore, LNP uptake, endosomal escape, and mRNA translation with and without TLR4 activation are quantified. In vivo DNA barcoding is used to discover a novel LNP that delivers mRNA to Kupffer cells at clinical doses; unlike most LNPs, this LNP does not preferentially target hepatocytes. TLR4 activation blocks mRNA translation in all tested cell types, without reducing LNP uptake; inhibiting TLR4 or its downstream effector protein kinase R improved delivery. The discrepant effects of TLR4 on i) LNP uptake and ii) translation suggests TLR4 activation can "override" LNP targeting, even after mRNA is delivered into target cells. Given near-future clinical trials using mRNA to modulate inflammation, this highlights the need to understand inflammatory signaling in on- and off-target cells. More generally, this suggests an LNP which delivers mRNA to one inflammatory disease may not deliver mRNA to another.


Subject(s)
Immunity, Innate , Nanoparticles/chemistry , RNA, Messenger/metabolism , Animals , Endocytosis , Endosomes/metabolism , Immunity, Innate/drug effects , Lipids/chemistry , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Transgenic , RAW 264.7 Cells , RNA, Messenger/chemistry , Toll-Like Receptor 4/metabolism
7.
Adv Mater ; 31(14): e1807748, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30748040

ABSTRACT

Using mRNA to produce therapeutic proteins is a promising approach to treat genetic diseases. However, systemically delivering mRNA to cell types besides hepatocytes remains challenging. Fast identification of nanoparticle delivery (FIND) is a DNA barcode-based system designed to measure how over 100 lipid nanoparticles (LNPs) deliver mRNA that functions in the cytoplasm of target cells in a single mouse. By using FIND to quantify how 75 chemically distinct LNPs delivered mRNA to 28 cell types in vivo, it is found that an LNP formulated with oxidized cholesterol and no targeting ligand delivers Cre mRNA, which edits DNA in hepatic endothelial cells and Kupffer cells at 0.05 mg kg-1 . Notably, the LNP targets liver microenvironmental cells fivefold more potently than hepatocytes. The structure of the oxidized cholesterols added to the LNP is systematically varied to show that the position of the oxidative modification may be important; cholesterols modified on the hydrocarbon tail associated with sterol ring D tend to outperform cholesterols modified on sterol ring B. These data suggest that LNPs formulated with modified cholesterols can deliver gene-editing mRNA to the liver microenvironment at clinically relevant doses.


Subject(s)
Cellular Microenvironment , Cholesterol/chemistry , Drug Carriers/chemistry , Liver/cytology , Nanoparticles/chemistry , Animals , Mice , Oxidation-Reduction , RNA, Messenger/chemistry , RNA, Messenger/metabolism
8.
J Mater Chem B ; 6(44): 7197-7203, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30555697

ABSTRACT

The efficacy of nucleic acid therapies can be limited by unwanted degradation. Chemical modifications are known to improve nucleic acid stability, but the (i) types, (ii) positions, and (iii) numbers of modifications all matter, making chemically optimizing nucleic acids a combinatorial problem. As a result, in vivo studies of nucleic acid stability are time consuming and expensive. We reasoned that DNA barcodes could simultaneously study how chemical modification patterns affect nucleic acid stability, saving time and resources. We confirmed that rationally designed DNA barcodes can elucidate the role of specific chemical modifications in serum, in vitro and in vivo; we also identified a modification pattern that enhanced stability. This approach to screening chemical modifications in vivo can efficiently optimize nucleic acid structure, which will improve biomaterial-based nucleic acid drugs.

9.
Nano Lett ; 18(3): 2148-2157, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29489381

ABSTRACT

Endothelial cells and macrophages play active roles in disease and as a result are important targets for nucleic acid therapies. While thousands of chemically distinct lipid nanoparticles (LNPs) can be synthesized to deliver nucleic acids, studying more than a few LNPs in vivo is challenging. As a result, it is difficult to understand how nanoparticles target these cells in vivo. Using high throughput LNP barcoding, we quantified how well LNPs delivered DNA barcodes to endothelial cells and macrophages in vitro, as well as endothelial cells and macrophages isolated from the lung, heart, and bone marrow in vivo. We focused on two fundamental questions in drug delivery. First, does in vitro LNP delivery predict in vivo LNP delivery? By comparing how 281 LNPs delivered barcodes to endothelial cells and macrophages in vitro and in vivo, we found in vitro delivery did not predict in vivo delivery. Second, does LNP delivery change within the microenvironment of a tissue? We quantified how 85 LNPs delivered barcodes to eight splenic cell populations, and found that cell types derived from myeloid progenitors tended to be targeted by similar LNPs, relative to cell types derived from lymphoid progenitors. These data demonstrate that barcoded LNPs can elucidate fundamental questions about in vivo nanoparticle delivery.


Subject(s)
Drug Delivery Systems , Lipids/chemistry , Nanoparticles/chemistry , Nucleic Acids/administration & dosage , Animals , Cell Line , Cells, Cultured , Endothelial Cells/metabolism , Female , Humans , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Nanotechnology , Nucleic Acids/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...