Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Appl Clin Med Phys ; 23(8): e13699, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35856943

ABSTRACT

PURPOSE: Well-designed routine multileaf collimator (MLC) quality assurance (QA) is important to assure external-beam radiation treatment delivery accuracy. This study evaluates the clinical necessity of a comprehensive weekly (C-Weekly) MLC QA program compared to the American Association of Physics in Medicinerecommended weekly picket fence test (PF-Weekly), based on our seven-year experience with weekly MLC QA. METHODS: The C-Weekly MLC QA program used in this study includes 5 tests to analyze: (1) absolute MLC leaf position; (2) interdigitation MLC leaf position; (3) picket fence MLC leaf positions at static gantry angle; (4) minimum leaf-gap setting; and (5) volumetric-modulated arc therapy delivery. A total of 20,226 QA images from 16,855 tests (3,371 tests × 5) for 11 linacs at 5 photon clinical sites from May 2014 to June 2021 were analyzed. Failure mode and effects analysis was performed with 5 failure modes related to the 5 tests. For each failure mode, a risk probability number (RPN) was calculated for a C-Weekly and a PF-Weekly MLC QA program. The probability of occurrence was evaluated from statistical analyses of the C-Weekly MLC QA. RESULTS: The total number of failures for these 16,855 tests was 143 (0.9%): 39 (27.3%) for absolute MLC leaf position, 13 (9.1%) for interdigitation position, 9 (6.3%) for static gantry picket fence, 2 (1.4%) for minimum leaf-gap setting, and 80 (55.9%) for VMAT delivery. RPN scores for PF-Weekly MLC QA ranged from 60 to 192 and from 48 to 96 for C-Weekly MLC QA. CONCLUSION: RPNs for the 5 failure modes of MLC QA tests were quantitatively determined and analyzed. A comprehensive weekly MLC QA is imperative to lower the RPNs of the 5 failure modes to the desired level (<125); those from the PF-Weekly MLC QA program were found to be higher (>125). This supports the clinical necessity for comprehensive weekly MLC QA.


Subject(s)
Particle Accelerators , Radiotherapy, Intensity-Modulated , Electrical Equipment and Supplies , Humans , Radiotherapy, Intensity-Modulated/methods
2.
Transl Lung Cancer Res ; 6(2): 131-147, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28529896

ABSTRACT

The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement.

3.
Radiology ; 279(3): 805-16, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26761720

ABSTRACT

Purpose To develop multiparametric magnetic resonance (MR) imaging models to generate a quantitative, user-independent, voxel-wise composite biomarker score (CBS) for detection of prostate cancer by using coregistered correlative histopathologic results, and to compare performance of CBS-based detection with that of single quantitative MR imaging parameters. Materials and Methods Institutional review board approval and informed consent were obtained. Patients with a diagnosis of prostate cancer underwent multiparametric MR imaging before surgery for treatment. All MR imaging voxels in the prostate were classified as cancer or noncancer on the basis of coregistered histopathologic data. Predictive models were developed by using more than one quantitative MR imaging parameter to generate CBS maps. Model development and evaluation of quantitative MR imaging parameters and CBS were performed separately for the peripheral zone and the whole gland. Model accuracy was evaluated by using the area under the receiver operating characteristic curve (AUC), and confidence intervals were calculated with the bootstrap procedure. The improvement in classification accuracy was evaluated by comparing the AUC for the multiparametric model and the single best-performing quantitative MR imaging parameter at the individual level and in aggregate. Results Quantitative T2, apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), reflux rate constant (kep), and area under the gadolinium concentration curve at 90 seconds (AUGC90) were significantly different between cancer and noncancer voxels (P < .001), with ADC showing the best accuracy (peripheral zone AUC, 0.82; whole gland AUC, 0.74). Four-parameter models demonstrated the best performance in both the peripheral zone (AUC, 0.85; P = .010 vs ADC alone) and whole gland (AUC, 0.77; P = .043 vs ADC alone). Individual-level analysis showed statistically significant improvement in AUC in 82% (23 of 28) and 71% (24 of 34) of patients with peripheral-zone and whole-gland models, respectively, compared with ADC alone. Model-based CBS maps for cancer detection showed improved visualization of cancer location and extent. Conclusion Quantitative multiparametric MR imaging models developed by using coregistered correlative histopathologic data yielded a voxel-wise CBS that outperformed single quantitative MR imaging parameters for detection of prostate cancer, especially when the models were assessed at the individual level. (©) RSNA, 2016 Online supplemental material is available for this article.


Subject(s)
Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Aged , Area Under Curve , Humans , Male , Middle Aged , Models, Statistical , Prostatic Neoplasms/pathology
4.
J Magn Reson Imaging ; 41(4): 1104-14, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24700476

ABSTRACT

PURPOSE: To present a novel registration approach called LATIS (Local Affine Transformation guided by Internal Structures) for coregistering post prostatectomy pseudo-whole mount (PWM) pathological sections with in vivo MRI (magnetic resonance imaging) images. MATERIALS AND METHODS: Thirty-five patients with biopsy-proven prostate cancer were imaged at 3T with an endorectal coil. Excised prostate specimens underwent quarter mount step-section pathologic processing, digitization, annotation, and assembly into a PWM. Manually annotated macro-structures on both pathology and MRI were used to assist registration using a relaxed local affine transformation approximation. Registration accuracy was assessed by calculation of the Dice similarity coefficient (DSC) between transformed and target capsule masks and least-square distance between transformed and target landmark positions. RESULTS: LATIS registration resulted in a DSC value of 0.991 ± 0.004 and registration accuracy of 1.54 ± 0.64 mm based on identified landmarks common to both datasets. Image registration performed without the use of internal structures led to an 87% increase in landmark-based registration error. Derived transformation matrices were used to map regions of pathologically defined disease to MRI. CONCLUSION: LATIS was used to successfully coregister digital pathology with in vivo MRI to facilitate improved correlative studies between pathologically identified features of prostate cancer and multiparametric MRI.


Subject(s)
Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Prostatic Neoplasms/pathology , Subtraction Technique , Aged , Algorithms , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
5.
Contrast Media Mol Imaging ; 9(2): 169-76, 2014.
Article in English | MEDLINE | ID: mdl-24523062

ABSTRACT

In vitro T(1) and T(2) (*) relaxivities (r(1) and r(2) (*) ) of Gd-DTPA (GaD) in oxygenated human venous blood (OVB) and aqueous solution (AS) at 3 and 7 T were calculated. GaD concentrations ([GaD]) in OVB and AS were prepared in the range 0-5 mM. All measurements were acquired at 37 ± 2 °C. At both 3 and 7 T, a linear relationship was observed between [GaD] and R(1) in both AS and OVB. At 7 T, r(1) in AS decreased by 7.5% (p = 0.045) while there was a negligible change in OVB. With respect to R(2) (*) , a linear relationship with [GaD] was only observed in AS, while a more complex relationship was observed in OVB; quadratic below and linear above 2 mM at both field strengths. There was a significant increase of over 4-fold in r(2) (*) with GaD in OVB at 7 T (for [GaD] above 2 mM, p <<0.01) as compared with 3 T. Furthermore, in comparison to r1 , r2 (*) in AS was less than 2-fold higher at both field strengths while in OVB it was ~20-fold and ~90-fold higher at 3 and 7 T, respectively. This observation emphasizes the importance of r(2) (*) knowledge at high magnetic fields, ≥3 T. The comparison between r(1) and r(2) (*) presented in this work is crucial in the design and optimization of high-field MRI studies making use of paramagnetic contrast agents. This is especially true in multiple compartment systems such as blood, where r(2) (*) dramatically increases while r1 remains relatively constant with increasing magnetic field strength.


Subject(s)
Contrast Media , Gadolinium DTPA , Magnetic Resonance Imaging/methods , Humans , Magnetic Fields , Oxygen/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...