Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Clin Microbiol ; 62(6): e0162923, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38687021

ABSTRACT

Botulism is a paralytic disease due to the inhibition of acetylcholine exocytosis at the neuromuscular junction, which can be lethal if left untreated. Botulinum neurotoxins (BoNTs) are produced by some spore-forming Clostridium bacteria. The current confirmatory assay to test for BoNTs in clinical specimens is the gold-standard mouse bioassay. However, an Endopep-MS assay method has been developed to detect BoNTs in clinical samples using benchtop mass spectrometric detection. This work demonstrates the validation of the Endopep-MS method for clinical specimens with the intent of method distribution in public health laboratories. The Endopep-MS assay was validated by assessing the sensitivity, robustness, selectivity, specificity, and reproducibility. The limit of detection was found to be equivalent to or more sensitive than the mouse bioassay. Specificity studies determined no cross-reactivity between the different serotypes and no false positives from an exclusivity panel of culture supernatants of enteric disease organisms and non-toxigenic strains of Clostridium. Inter-serotype specificity testing with 19 BoNT subtypes was 100% concordant with the expected results, accurately determining the presence of the correct serotype and the absence of incorrect serotypes. Additionally, a panel of potential interfering substances was used to test selectivity. Finally, clinical studies included clinical specimen stability and reproducibility, which was found to be 99.9% from a multicenter evaluation study. The multicenter validation study also included a clinical validation study, which yielded a 99.4% correct determination rate. Use of the Endopep-MS method will improve the capacity and response time for laboratory confirmation of botulism in public health laboratories.


Subject(s)
Botulinum Toxins , Botulism , Mass Spectrometry , Sensitivity and Specificity , Humans , Botulinum Toxins/analysis , Reproducibility of Results , Mass Spectrometry/methods , Botulism/diagnosis , Animals , Mice , Biological Assay/methods
2.
Anal Biochem ; 631: 114364, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34487718

ABSTRACT

Ricin is a toxic protein derived from the castor bean plant (Ricinus communis) and has potential for bioterrorism or criminal use. Therefore, sensitive and rapid analytical methods are needed for its confirmatory detection in environmental samples. Our laboratory previously reported on the development of a confirmatory method to detect ricin involving antibody capture of ricin followed by mass spectrometric detection of ricin's enzymatic activity and of tryptic fragments unique to ricin. Here, we describe a novel ricin capture method of magnetic beads coated with 4-aminophenyl-1-thiol-ß-galactopyranoside, using ricin's lectin characteristics. The assay has been adapted for use on a simple, benchtop MALDI-TOF MS mass spectrometer common in clinical microbiology laboratories. Validation of the novel assay includes establishment of a limit of detection, and an examination of assay selectivity. The limit of detection of the enzymatic activity method is 8 ng/mL and 500 ng/mL for the confirmatory tryptic fragment assay. The assay is highly selective with no cross-reactivity from near neighbors and highly specific with a panel of 19 cultivars all testing positive. Additionally, there were no interferences found during testing of a panel of white powders. This allows for a confirmatory detection method for ricin in laboratories lacking expensive, sophisticated mass spectrometers.


Subject(s)
Microspheres , Ricin/analysis , Ricin/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Antibodies/chemistry , Food Contamination/analysis , Galactose/chemistry , Lactase/chemistry , Limit of Detection , Magnetic Phenomena , Milk/chemistry , Plant Extracts/analysis , Powders/analysis , Powders/chemistry , Reproducibility of Results , Ricin/metabolism , Ricinus/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Trypsin/chemistry
3.
Toxins (Basel) ; 13(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374240

ABSTRACT

Botulinum neurotoxins (BoNTs) are among the most poisonous known biological substances, and therefore the availability of reliable, easy-to use tools for BoNT detection are important goals for food safety and human and animal health. The reference method for toxin detection and identification is the mouse bioassay (MBA). An EndoPep-MS method for BoNT differentiation has been developed based on mass spectrometry. We have validated and implemented the EndoPep-MS method on a Bruker MALDI Biotyper for the detection of BoNT/C and D serotypes. The method was extensively validated using experimentally and naturally contaminated samples comparing the results with those obtained with the MBA. Overall, the limit of detection (LoD) for both C and D toxins were less than or equal to two mouse lethal dose 50 (mLD50) per 500 µL for all tested matrices with the exception of feces spiked with BoNT/C which showed signals not-related to specific peptide fragments. Diagnostic sensitivity, specificity and positive predictive value were 100% (95% CI: 87.66-100%), 96.08% (95% CI: 86.54-99.52%), and 93.33% (95% CI: 78.25-98.20%), respectively, and accuracy was 97.47% (95% CI: 91.15-99.69%). In conclusion, the tests carried out showed that the EndoPep-MS method, initially developed using more powerful mass spectrometers, can be applied to the Bruker MALDI Biotyper instrument with excellent results including for detection of the proteolytic activity of BoNT/C, BoNT/D, BoNT/CD, and BoNT/DC toxins.


Subject(s)
Botulinum Toxins/chemistry , Mass Spectrometry/methods , Animals , Antibodies , Biological Assay , Botulinum Toxins/toxicity , Limit of Detection , Mice , Sensitivity and Specificity
4.
J Anal Toxicol ; 44(2): 173-179, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31287544

ABSTRACT

Botulinum neurotoxins (BoNTs) are a family of protein toxins consisting of seven known serotypes (BoNT/A-BoNT/G) and multiple subtypes within the serotypes, and all of which cause the disease botulism-a disease of great public health concern. Accurate detection of BoNTs in human clinical samples is therefore an important public health goal. To achieve this goal, our laboratory developed a mass spectrometry-based assay detecting the presence of BoNT via its enzymatic activity on a peptide substrate. Recently, publications reported the use of new peptide substrates to detect BoNT/A and /B with improved results over other peptide substrates. However, the authors did not provide results of their peptide substrate on multiple subtypes of BoNT. In this work, we describe the results of testing the new substrates with multiple BoNT/A and /B subtypes and find that the substrates cannot detect many subtypes of BoNT/A and /B.


Subject(s)
Botulinum Toxins/analysis , Biological Assay , Botulinum Toxins, Type A , Botulism , Enkephalins , Humans , Limit of Detection , Mass Spectrometry , Peptides , Protein Precursors
5.
Anal Bioanal Chem ; 411(21): 5489-5497, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31172236

ABSTRACT

Clostridium botulinum produces botulinum neurotoxins (BoNTs) that are one of the most poisonous substances. In order to respond to public health emergencies, there is a need to develop sensitive and specific methods for detecting botulinum toxin in various clinical matrices. Our laboratory has developed a mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate BoNT serotypes A-G by immunoaffinity capture of toxins and detection of unique cleavage products of peptide substrates. To improve the sensitivity of the Endopep-MS assay for the detection of BoNT serotype G, we report here the optimization of synthetic peptide substrates through systematic substitution, deletion, and incorporation of unnatural amino acids. Our data show that the resulting optimized peptides produced a significant improvement (two orders of magnitude) in assay sensitivity and allowed the detection of 0.01 mouseLD50 toxin present in buffer solution.


Subject(s)
Botulinum Toxins/analysis , Peptides/chemistry , Humans , Limit of Detection
7.
Toxins (Basel) ; 9(6)2017 06 15.
Article in English | MEDLINE | ID: mdl-28617306

ABSTRACT

Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs), toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC), alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs) to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH), and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC), but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs) which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.


Subject(s)
Botulinum Toxins/genetics , Hemagglutinins/genetics , Clostridium botulinum/genetics , Multigene Family , Open Reading Frames
8.
Anal Bioanal Chem ; 409(20): 4779-4786, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28573317

ABSTRACT

Rapid and sensitive detection of botulinum neurotoxins (BoNTs), which cause botulism, is essential in a public health emergency or bioterrorism event. We have previously developed a mass spectrometry (MS)-based functional method, Endopep-MS assay, for the fast detection and differentiation of all BoNT serotypes by affinity enriching the toxin and detecting the serotype-specific cleavage products of peptide substrates derived from the in vivo targets. To improve the performance of the Endopep-MS assay, we report here the further optimization of the peptide substrate for the detection of serotype A botulinum neurotoxins. An increased substrate cleavage was achieved by extending the original peptide N-terminus with optimized amino acid sequence, increasing the detection sensitivity of the method. In addition, the resistance of the substrate to nonspecific hydrolysis was dramatically improved by selectively substituting amino acids at the scissile bond and various other positions of the extended peptide. Moreover, incorporating the N-terminal hydrophobic residues dramatically improved the relative intensity of the cleavage products in the mass spectra. This allowed easy detection of the cleavage products, further enhancing the performance of the assay. The limit of detection for spiked serum sample was enhanced from 0.5 to 0.1 mouseLD50 and from 0.5 to 0.2 mouseLD50 for spiked stool. Graphical abstract Mass spectra of optimized and old peptide substrates with BoNT/A.


Subject(s)
Botulinum Toxins/analysis , Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Limit of Detection , Mice
9.
Sci Rep ; 7: 42923, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220863

ABSTRACT

Botulinum neurotoxin (BoNT) binds to and internalizes its light chain into presynaptic compartments with exquisite specificity. While the native toxin is extremely lethal, bioengineering of BoNT has the potential to eliminate toxicity without disrupting neuron-specific targeting, thereby creating a molecular vehicle capable of delivering therapeutic cargo into the neuronal cytosol. Building upon previous work, we have developed an atoxic derivative (ad) of BoNT/C1 through rationally designed amino acid substitutions in the metalloprotease domain of wild type (wt) BoNT/C1. To test if BoNT/C1 ad retains neuron-specific targeting without concomitant toxic host responses, we evaluated the localization, activity, and toxicity of BoNT/C1 ad in vitro and in vivo. In neuronal cultures, BoNT/C1 ad light chain is rapidly internalized into presynaptic compartments, but does not cleave SNARE proteins nor impair spontaneous neurotransmitter release. In mice, systemic administration resulted in the specific co-localization of BoNT/C1 ad with diaphragmatic motor nerve terminals. The mouse LD50 of BoNT/C1 ad is 5 mg/kg, with transient neurological symptoms emerging at sub-lethal doses. Given the low toxicity and highly specific neuron-targeting properties of BoNT/C1 ad, these data suggest that BoNT/C1 ad can be useful as a molecular vehicle for drug delivery to the neuronal cytoplasm.


Subject(s)
Botulinum Toxins/metabolism , Drug Carriers/chemistry , Amino Acid Sequence , Animals , Botulinum Toxins/genetics , Botulinum Toxins/toxicity , Cells, Cultured , Dimerization , Female , Lethal Dose 50 , Mice , Microscopy, Confocal , Mouse Embryonic Stem Cells/cytology , Neurons/cytology , Neurons/metabolism , Synaptic Transmission/drug effects , Synaptosomal-Associated Protein 25/metabolism , Syntaxin 1/metabolism
10.
Toxins (Basel) ; 9(1)2017 01 18.
Article in English | MEDLINE | ID: mdl-28106761

ABSTRACT

Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future.


Subject(s)
Botulinum Toxins/classification , Terminology as Topic , Botulinum Toxins/history , Consensus , History, 20th Century , History, 21st Century , Humans
12.
mSphere ; 1(1)2016.
Article in English | MEDLINE | ID: mdl-27303710

ABSTRACT

Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated "type H," has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 10(7) mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A to G, based upon their selective neutralization by homologous antiserum, which is relevant for clinical and diagnostic purposes. Even though supportive care dramatically reduces the death rate of botulism, the only pharmaceutical intervention to reduce symptom severity and recovery time is early administration of antitoxin (antiserum raised against BoNTs). A recent report of a novel BoNT serotype, serotype H, raised concern of a "treatment-resistant" and highly potent toxin. However, the toxin's chimeric structure and characteristics indicate a chimeric BoNT/FA. Here we describe the first characterization of this novel toxin in purified form. BoNT/FA was neutralized by available antitoxins, supporting classification as BoNT/FA. BoNT/FA required proteolytic activation to achieve full toxicity and had relatively low potency in mice compared to BoNT/A1 but surprisingly high activity in cultured neurons.

13.
Anal Chem ; 88(13): 6867-72, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27264550

ABSTRACT

Ricin is a highly toxic protein which causes cell death by blocking protein synthesis and is considered a potential bioterrorism agent. Rapid and sensitive detection of ricin toxin in various types of sample matrices is needed as an emergency requirement for public health and antibioterrorism response. An in vitro MALDI TOF MS-based activity assay that detects ricin mediated depurination of synthetic substrates was improved through optimization of the substrate, reaction conditions, and sample preparation. In this method, the ricin is captured by a specific polycolonal antibody followed by hydrolysis reaction. The ricin activity is determined by detecting the unique cleavage product of synthetic oligomer substrates. The detection of a depurinated substrate was enhanced by using a more efficient RNA substrate and optimizing buffer components, pH, and reaction temperature. In addition, the factors involved in mass spectrometry analysis, such as MALDI matrix, plate, and sample preparation, were also investigated to improve the ionization of the depurinated product and assay reproducibility. With optimized parameters, the limit of detection of 0.2 ng/mL of ricin spiked in buffer and milk was accomplished, representing more than 2 orders of magnitude enhancement in assay sensitivity. Improving assay's ruggeddness or reproducibility also made it possible to quantitatively detect active ricin with 3 orders of magnitude dynamic range.

14.
J Infect Dis ; 213(3): 379-85, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26068781

ABSTRACT

Botulism is a potentially fatal paralytic disease caused by the action of botulinum neurotoxin (BoNT) on nerve cells. There are 7 known serotypes (A-G) of BoNT and up to 40 genetic variants. Clostridium botulinum strain IBCA10-7060 was recently reported to produce BoNT serotype B (BoNT/B) and a novel BoNT, designated as BoNT/H. The BoNT gene (bont) sequence of BoNT/H was compared to known bont sequences. Genetic analysis suggested that BoNT/H has a hybrid-like structure containing regions of similarity to the structures of BoNT/A1 and BoNT/F5. This novel BoNT was serologically characterized by the mouse neutralization assay and a neuronal cell-based assay. The toxic effects of this hybrid-like BoNT were completely eliminated by existing serotype A antitoxins, including those contained in multivalent therapeutic antitoxin products that are the mainstay of human botulism treatment.


Subject(s)
Botulinum Antitoxin/pharmacology , Botulinum Toxins/chemistry , Botulinum Toxins/classification , Animals , Biological Assay , Humans , Mice
15.
Toxins (Basel) ; 7(12): 4881-94, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26610568

ABSTRACT

Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin's activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.


Subject(s)
Ricin/analysis , Adenine/chemistry , Amino Acid Sequence , Mass Spectrometry/methods , Plant Lectins/analysis , Plant Lectins/chemistry , Ricin/chemistry
16.
BMC Microbiol ; 15: 227, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26494251

ABSTRACT

BACKGROUND: The disease botulism is caused by intoxication with botulinum neurotoxins (BoNTs), extremely toxic proteins which cause paralysis. This neurotoxin is produced by some members of the Clostridium botulinum and closely related species, and is produced as a protein complex consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). There are seven known serotypes of BoNT, A-G, and the composition of the NAPs can differ between these serotypes. It was previously published that the BoNT/G complex consisted of BoNT/G, nontoxic-nonhemagglutinin (NTNH), Hemagglutinin 70 (HA-70), and HA-17, but that HA-33, a component of the protein complex of other serotypes of BoNT, was not found. METHODS: Components of the BoNT/G complex were first separated by SDS-PAGE, and bands corresponding to components of the complex were digested and analyzed by LC-MS/MS. RESULTS: Gel bands were identified with sequence coverages of 91% for BoNT/G, 91% for NTNH, 89% for HA-70, and 88% for HA-17. Notably, one gel band was also clearly identified as HA-33 with 93% sequence coverage. CONCLUSIONS: The BoNT/G complex consists of BoNT/G, NTNH, HA-70, HA-17, and HA-33. These proteins form the progenitor form of BoNT/G, similar to all other HA positive progenitor toxin complexes.


Subject(s)
Botulinum Toxins/analysis , Botulinum Toxins/chemistry , Botulinum Toxins/metabolism , Clostridium botulinum/metabolism , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Tandem Mass Spectrometry
17.
Toxins (Basel) ; 7(9): 3497-511, 2015 Aug 31.
Article in English | MEDLINE | ID: mdl-26404376

ABSTRACT

Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.


Subject(s)
Bacterial Proteins/analysis , Bacterial Toxins/analysis , Antigens, Bacterial/analysis , Bacillus anthracis/metabolism , Botulinum Toxins, Type A/analysis , Clostridium botulinum/metabolism , Neurotoxins/analysis , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Toxins (Basel) ; 7(5): 1765-78, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25996606

ABSTRACT

Botulinum neurotoxins (BoNTs) cause the disease called botulism, which can be lethal. BoNTs are proteins secreted by some species of clostridia and are known to cause paralysis by interfering with nerve impulse transmission. Although the human lethal dose of BoNT is not accurately known, it is estimated to be between 0.1 µg to 70 µg, so it is important to enable detection of small amounts of these toxins. Our laboratory previously reported on the development of Endopep-MS, a mass-spectrometric­based endopeptidase method to detect, differentiate, and quantify BoNT immunoaffinity purified from complex matrices. In this work, we describe the application of Endopep-MS for the analysis of thirteen blinded samples supplied as part of the EQuATox proficiency test. This method successfully identified the presence or absence of BoNT in all thirteen samples and was able to successfully differentiate the serotype of BoNT present in the samples, which included matrices such as buffer, milk, meat extract, and serum. Furthermore, the method yielded quantitative results which had z-scores in the range of -3 to +3 for quantification of BoNT/A containing samples. These results indicate that Endopep-MS is an excellent technique for detection, differentiation, and quantification of BoNT in complex matrices.


Subject(s)
Botulinum Toxins/analysis , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Botulinum Toxins/blood , Botulinum Toxins/chemistry , Botulinum Toxins/immunology , Food Contamination/analysis , Mass Spectrometry/methods , Meat/analysis , Milk/chemistry
19.
Bioorg Med Chem ; 23(13): 3667-73, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25913863

ABSTRACT

It is essential to have a simple, quick and sensitive method for the detection and quantification of botulinum neurotoxins, the most toxic substances and the causative agents of botulism. Type C botulinum neurotoxin (BoNT/C) represents one of the seven members of distinctive BoNT serotypes (A to G) that cause botulism in animals and avians. Here we report the development of optimized peptide substrates for improving the detection of BoNT/C and /CD mosaic toxins using an Endopep-MS assay, a mass spectrometry-based method that is able to rapidly and sensitively detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Based on the sequence of a short SNAP-25 peptide, we conducted optimization through a comprehensive process including length determination, terminal modification, single and multiple amino acid residue substitution, and incorporation of unnatural amino acid residues. Our data demonstrate that an optimal peptide provides a more than 200-fold improvement over the substrate currently used in the Endopep-MS assay for the detection of BoNT/C1 and /CD mosaic. Using the new substrate in a four-hour cleavage reaction, the limit of detection for the BoNT/C1 complex spiked in buffer, serum and milk samples was determined to be 0.5, 0.5 and 1mouseLD50/mL, respectively, representing a similar or higher sensitivity than that obtained by traditional mouse bioassay.


Subject(s)
Antibodies, Monoclonal/chemistry , Biological Assay , Botulinum Toxins/blood , Peptides/chemistry , Amino Acid Sequence , Animals , Binding Sites, Antibody , Clostridium botulinum/chemistry , Humans , Limit of Detection , Mass Spectrometry , Mice , Molecular Sequence Data , Peptides/chemical synthesis , Protein Binding , Proteolysis
20.
Anal Chem ; 87(7): 3911-7, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25731972

ABSTRACT

A unique strain of Clostridium botulinum (IBCA10-7060) was recently discovered which produces two toxins: botulinum neurotoxin (BoNT) serotype B and a novel BoNT reported as serotype H. Previous molecular assessment showed that the light chain (LC) of the novel BoNT most resembled the bont of the light chain of known subtype F5, while the C-terminus of the heavy chain (HC) most resembled the binding domain of serotype A. We evaluated the functionality of both toxins produced in culture by first incorporating an immunoaffinity step using monoclonal antibodies to purify BoNT from culture supernatants and tested each immune-captured neurotoxin with full-length substrates vesicle-associated membrane protein 2 (VAMP-2), synaptosomal-associated protein 25 (SNAP-25), syntaxin, and shortened peptides representing the substrates. The BoNT/B produced by this strain behaved as a typical BoNT/B, having immunoaffinity for anti-B monoclonal antibodies and cleaving both full length VAMP-2 and a peptide based on the sequence of VAMP-2 in the expected location. As expected, there was no activity toward SNAP-25 or syntaxin. The novel BoNT demonstrated immunoaffinity for anti-A monoclonal antibodies but did not cleave SNAP-25 as expected for BoNT/A. Instead, the novel BoNT cleaved VAMP-2 and VAMP-2-based peptides in the same location as BoNT/F5. This is the first discovery of a single botulinum neurotoxin with BoNT/A antigenicity and BoNT/F light chain function. This work suggests that the newly reported serotype H may actually be a hybrid of previously known BoNT serotype A and serotype F, specifically subtype F5.


Subject(s)
Botulinum Toxins, Type A/metabolism , Botulinum Toxins/metabolism , Clostridium botulinum/chemistry , Botulinum Toxins/chemistry , Botulinum Toxins, Type A/chemistry , Chromatography, Liquid , Clostridium botulinum/metabolism , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...