Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 24(21): 2850-6, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22539155

ABSTRACT

Metallized paper is patterned to create touch pads of arrayed buttons that are sensitive to contact with both bare and gloved fingers. The paper-based keypad detects the change in capacitance associated with the touch of a finger to one of its buttons. Mounted on an alarmed cardboard box, the keypad requires the appropriate sequence of touches to disarm the system.


Subject(s)
Electronics , Paper , Aluminum/chemistry , Cellulose/chemistry , Electric Capacitance , Metals/chemistry
2.
Science ; 328(5974): 76-80, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20360104

ABSTRACT

Using friction force microscopy, we compared the nanoscale frictional characteristics of atomically thin sheets of graphene, molybdenum disulfide (MoS2), niobium diselenide, and hexagonal boron nitride exfoliated onto a weakly adherent substrate (silicon oxide) to those of their bulk counterparts. Measurements down to single atomic sheets revealed that friction monotonically increased as the number of layers decreased for all four materials. Suspended graphene membranes showed the same trend, but binding the graphene strongly to a mica surface suppressed the trend. Tip-sample adhesion forces were indistinguishable for all thicknesses and substrate arrangements. Both graphene and MoS2 exhibited atomic lattice stick-slip friction, with the thinnest sheets possessing a sliding-length-dependent increase in static friction. These observations, coupled with finite element modeling, suggest that the trend arises from the thinner sheets' increased susceptibility to out-of-plane elastic deformation. The generality of the results indicates that this may be a universal characteristic of nanoscale friction for atomically thin materials weakly bound to substrates.

3.
Nat Nanotechnol ; 4(12): 861-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19893525

ABSTRACT

The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical applications. Here, we demonstrate the fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the megahertz range, and the strong dependence of resonant frequency on applied gate voltage can be fitted to a membrane model to yield the mass density and built-in strain of the graphene. Following the removal and addition of mass, changes in both density and strain are observed, indicating that adsorbates impart tension to the graphene. On cooling, the frequency increases, and the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching approximately 1 x 10(4) at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, the groundwork for applications of these devices, including high-sensitivity mass detectors, is put in place.

SELECTION OF CITATIONS
SEARCH DETAIL
...