Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ground Water ; 61(1): 119-130, 2023 01.
Article in English | MEDLINE | ID: mdl-35729090

ABSTRACT

Large-scale and high-resolution groundwater models are currently becoming increasingly important in order to clarify the extent to which climate trends and extreme weather affect the groundwater balance regionally. As a result, the parameterization of groundwater models is becoming more detailed and more complex, making conventional calibration methods too time-consuming. Moderating the computational demand to find optimal solutions for the resulting potentially multi-modal objective function requires intelligent and efficient global optimization methods. Moreover, the increasing use of modern scripting languages R and Python to craft environmental analysis workflows calls to integrate groundwater flow simulators in such. Here we introduce and exemplify r2ogs5, a tool that integrates version 5 of the open-source simulation software OpenGeoSys into the programming language R. r2ogs5 allows for calibration of numerical groundwater flow models with a sequential model-based optimization approach that combines Bayesian optimization (BO) with surrogate modeling. Here, we describe the structure and function of r2ogs5 as well as the implemented calibration method. We then demonstrate the calibration method by calibrating 4 and 12 parameters of two simple groundwater flow models. The results indicate that this method needs fewer runs of the groundwater flow model than conventional gradient search and Latin hypercube sampling in case of the 12 parameter model. We believe that our method offers the potential to calibrate computationally expensive groundwater flow models. r2ogs5 supports groundwater flow modelers to access the statistical analysis and visualization capabilities of the R language and is a valuable tool for geoscientists already using R.


Subject(s)
Groundwater , Models, Theoretical , Calibration , Bayes Theorem , Computer Simulation
2.
Water Sci Technol ; 80(3): 597-606, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31596270

ABSTRACT

Despite recent developments in process-based modeling of treatment wetlands (TW), the dynamic response of horizontal flow (HF) aerated wetlands to interruptions of aeration has not yet been modeled. In this study, the dynamic response of organic carbon and nitrogen removal to interruptions of aeration in an HF aerated wetland was investigated using a recently-developed numerical process-based model. Model calibration and validation were achieved using previously obtained data from pilot-scale experiments. Setting initial concentrations for anaerobic bacteria to high values (≈ 35-70 mg L-1) and including ammonia sorption was important to simulate the treatment performance of the experimental wetland in transition phases when aeration was switched off and on again. Even though steady-state air flow rate impacted steady-state soluble chemical oxygen demand (CODs), ammonia nitrogen (NH4-N) and oxidized nitrogen (NOx-N) concentration length profiles, it did not substantially affect corresponding effluent concentrations during aeration interruption. When comparing simulated with experimental results, it is most likely that extending the model to include mass transfer through the biofilm will allow to better explain the underlying experiments and to increase simulation accuracy. This study provides insights into the dynamic behavior of HF aerated wetlands and discusses assumptions and limitations of the modeling approach.


Subject(s)
Carbon/analysis , Nitrogen/analysis , Waste Disposal, Fluid , Water Pollution/statistics & numerical data , Wetlands , Biological Oxygen Demand Analysis , Denitrification
3.
Water Res ; 157: 321-334, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30959335

ABSTRACT

Mechanical aeration is commonly used to improve the overall treatment efficacy of constructed wetlands. However, the quantitative relationships of air flow rate (AFR), water temperature, field oxygen transfer and treatment performance have not been analyzed in detail until today. In this study, a reactive transport model based on dual-permeability flow and biokinetic formulations of the Constructed Wetland Model No. 1 (CWM1) was developed and extented to 1) simulate oxygen transfer and treatment performance for organic carbon and nitrogen of two pilot-scale horizontal flow (HF) aerated wetlands (Test and Control) treating domestic sewage, and, 2) to investigate the dependence of oxygen transfer and treatment performance on AFR and water temperature. Both pilot-scale wetlands exhibited preferential flow patters and high treatment performance for chemical oxygen demand (COD) and NH4-N at AFRs of 128-700 L m-2 h-1. A reduction of the AFR in the Test system from 128 to 72 L h-1 m-2 substantially inhibited NH4-N removal. Conservative tracer transport as well as reactive transport of dissolved oxygen (DO), soluble and total chemical oxygen demand (CODs, CODt), NH4-N and NOx-N measured in pilot-scale experiments were simulated with acceptable accuracy (E1¯=0.39±0.26). An equation to estimate the volumetric oxygen transfer coefficient was found to be: kLa,20=0.511ln(AFR). Simulated treatment performance depended on kLa,20 in a non-linear manner. A local sensitivity analysis of the calibrated parameters revealed porosity, hydraulic permeability and dispersion length of the fast flow field as well as kLa,20 as most important. An optimal AFR for a spatially and temporally continuous aeration pattern for treatment wetlands treating similar influent was estimated to 150-200 L h-1 m-2. This study provides insights into aeration mechanisms of aerated treatment wetlands and highlights the benefits of process modeling for in-depth system analysis.


Subject(s)
Oxygen , Wetlands , Biological Oxygen Demand Analysis , Carbon , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...