Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
MedComm (2020) ; 5(7): e583, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38919334

ABSTRACT

Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.

2.
ACS Pharmacol Transl Sci ; 6(12): 1758-1779, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38093832

ABSTRACT

Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.

3.
Am J Health Syst Pharm ; 80(8): 503-517, 2023 04 08.
Article in English | MEDLINE | ID: mdl-36680786

ABSTRACT

PURPOSE: Echinocandins are favored drugs for the treatment of fungal infections. There is growing evidence that obese patients treated with echinocandins have lower exposures due to pharmacokinetic (PK) alterations. We conducted a scoping review to characterize, evaluate, and summarize the available evidence on echinocandins exposures in obese patients. SUMMARY: A comprehensive search of PubMed, Embase, and Cochrane Library for studies on echinocandins published from database inception to October 28, 2022, was conducted using PRISMA-ScR methodology. A total of 25 studies comprising more than 3,174 subjects (8 micafungin studies, 7 caspofungin studies, 9 anidulafungin studies, and 1 rezafungin study) were included in this review. Seventeen studies reported lower echinocandins exposures in overweight and obese individuals compared with normal-weight individuals; the authors of these studies recommended dose adjustments. Conversely, 8 studies did not find significant differences in echinocandin exposure among subjects in varying body weight categories. Clinicians may consider dose adjustments of echinocandins in obese patients; however, there is limited evidence on the ideal dose adjustment strategy to overcome the low echinocandins exposures in obese patients. CONCLUSION: This scoping review shed light on a growing body of evidence indicating that obese patients have lower echinocandin exposures relative to targeted PK indices, which may lead to negative therapeutic implications. Currently, a lack of high-quality evidence impedes reaching consensus on recommendations for echinocandin dosing adjustment in obese patients. Future research evaluating the optimal echinocandin dosing strategy for obese patients is needed.


Subject(s)
Antifungal Agents , Echinocandins , Humans , Antifungal Agents/therapeutic use , Body Weight , Echinocandins/adverse effects , Echinocandins/pharmacokinetics , Lipopeptides/pharmacokinetics , Lipopeptides/therapeutic use , Microbial Sensitivity Tests , Obesity/drug therapy , Overweight
4.
Pharmacol Res ; 187: 106553, 2023 01.
Article in English | MEDLINE | ID: mdl-36400343

ABSTRACT

Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Movement , Gene Expression Regulation, Neoplastic
5.
Life Sci ; 309: 120984, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36150461

ABSTRACT

Urological cancers include bladder, prostate and renal cancers that can cause death in males and females. Patients with urological cancers are mainly diagnosed at an advanced disease stage when they also develop resistance to therapy or poor response. The use of natural products in the treatment of urological cancers has shown a significant increase. Curcumin has been widely used in cancer treatment due to its ability to trigger cell death and suppress metastasis. The beneficial effects of curcumin in the treatment of urological cancers is the focus of current review. Curcumin can induce apoptosis in the three types of urological cancers limiting their proliferative potential. Furthermore, curcumin can suppress invasion of urological cancers through EMT inhibition. Notably, curcumin decreases the expression of MMPs, therefore interfering with urological cancer metastasis. When used in combination with chemotherapy agents, curcumin displays synergistic effects in suppressing cancer progression. It can also be used as a chemosensitizer. Based on pre-clinical studies, curcumin administration is beneficial in the treatment of urological cancers and future clinical applications might be considered upon solving problems related to the poor bioavailability of the compound. To improve the bioavailability of curcumin and increase its therapeutic index in urological cancer suppression, nanostructures have been developed to favor targeted delivery.


Subject(s)
Antineoplastic Agents , Biological Products , Curcumin , Urologic Neoplasms , Male , Female , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Urologic Neoplasms/drug therapy , Urologic Neoplasms/chemically induced , Biological Products/pharmacology
6.
Iran J Pharm Res ; 21(1): e123828, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35765505

ABSTRACT

Surgery is the standard treatment for breast malignancies, although local and distant relapses might occur. Previous studies have shown that surgery-induced wound fluid (WF) contains tumor-initiating and progressing factors; however, these experiments have only been performed on breast cancer cell lines. Since a cancerous tumor includes various components like malignant cells, recruited non-malignant cells and extracellular matrix, those investigations that only focused on cancer cell lines themselves are not adequate to establish WF's effects. We conducted a 3D model study where we mimicked the tumor microenvironment to re-assess previous in-vitro findings. We generated human-derived breast tumor spheroids from 23 patient specimens, dissociated and cultured them in microfluidic devices. The spheroids from each sample were treated with the patients' WF or RPMI medium. The proportion of live and dead cells was assessed using live/dead assays and fluorescent imaging on day 6. In 22 samples, the percentage of live cells was significantly higher in the WF-treated group than in the RPMI-treated group. In one sample, we observed an opposite trend. The results were contrary in one of the samples, and we reported that case with more details. We compared the two groups using the 3D culture environment of human-derived tumor spheroids prepared from different microfluidic devices to mimic the tumor environment heterogeneity. Our findings showed that most patients with breast cancer benefit from surgical wound healing. However, removal of the surgical-induced serum may not be a method of inhibiting the tumor in all patients.

7.
Sci Rep ; 12(1): 7668, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538133

ABSTRACT

Intraoperative radiotherapy (IORT) could abrogate cancer recurrences, but the underlying mechanisms are unclear. To clarify the effects of IORT-induced wound fluid on tumor progression, we treated breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic cell culture systems, respectively. The viability, migration, and invasion of the cells under treatment of IORT-induced wound fluid (WF-RT) and the cells under surgery-induced wound fluid (WF) were compared. Our findings showed that cell viability was increased in spheroids under both WF treatments, whereas viability of the cell lines depended on the type of cells and incubation times. Both WFs significantly increased sub-G1 and arrested the cells in G0/G1 phases associated with increased P16 and P21 expression levels. The expression level of Caspase 3 in both cell culture systems and for both WF-treated groups was significantly increased. Furthermore, our results revealed that although the migration was increased in both systems of WF-treated cells compared to cell culture media-treated cells, E-cadherin expression was significantly increased only in the WF-RT group. In conclusion, WF-RT could not effectively inhibit tumor progression in an ex vivo tumor-on-chip model. Moreover, our data suggest that a microfluidic system could be a suitable 3D system to mimic in vivo tumor conditions than 2D cell culture.


Subject(s)
Breast Neoplasms , Surgical Wound , Breast Neoplasms/radiotherapy , Cell Culture Techniques/methods , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Microfluidics , Neoplasm Recurrence, Local , Spheroids, Cellular
8.
Immunohorizons ; 4(6): 332-338, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32554437

ABSTRACT

Several human autoimmune diseases are characterized by increased expression of type 1 IFN-stimulated genes in both the peripheral blood and tissue. The contributions of different type I IFNs to this gene signature are uncertain as the type I IFN family consists of 13 alphas and one each of ß, ε, κ, and ω subtypes. We sought to investigate the contribution of various IFNs to IFN signaling in primary human cell types. We stimulated primary skin, muscle, kidney, and PBMCs from normal healthy human donors with various TLR ligands and measured the expression of type I IFN subtypes and activation of downstream signaling by quantitative PCR. We show that IFNB1 is the dominant type I IFN expressed upon TLR3 and TLR4 stimulation, and its expression profile is associated with subsequent MX1 transcription. Furthermore, using an IFN-ß-specific neutralizing Ab, we show that MX1 expression is inhibited in a dose-dependent manner, suggesting that IFN-ß is the primary driver of IFN-stimulated genes following TLR3 and TLR4 engagement. Stimulation with TLR7/8 and TLR9 ligands induced IFNB1 and IFNA subtypes and MX1 expression only in PBMCs and not in tissue resident cell types. Concordantly, IFN-ß neutralization had no effect on MX1 expression in PBMCs potentially because of the combination of IFNB1 and IFNA expression. Combined, these data highlight the potential role for IFN-ß in driving local inflammatory responses in clinically relevant human tissue types and opportunities to treat local inflammation by targeting IFN-ß.


Subject(s)
Interferon-alpha/biosynthesis , Interferon-beta/biosynthesis , Myxovirus Resistance Proteins/metabolism , Cells, Cultured , Healthy Volunteers , Humans , Interferon-alpha/genetics , Interferon-beta/genetics , Ligands , Myxovirus Resistance Proteins/genetics , Signal Transduction/immunology , Toll-Like Receptor 3 , Toll-Like Receptor 4 , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Toll-Like Receptor 9
9.
Am J Pathol ; 190(4): 830-843, 2020 04.
Article in English | MEDLINE | ID: mdl-32035059

ABSTRACT

The molecular mechanisms of prostate inflammation are unclear. We hypothesized that heme oxygenase 1 (HMOX1; HO-1), an enzyme responsible for degradation of heme to carbon monoxide, bilirubin, and iron, is an important regulator of inflammation and epithelial responses in the prostate. Injection of non-uropathogenic Escherichia coli (MG1655 strain) or phosphate-buffered saline into the urethra of mice led to increased numbers of CD45+ leukocytes and mitotic markers (phosphorylated histone H3 and phosphorylated ERK1/2) in the prostate glands. Leukocyte infiltration was elevated in the prostates harvested from mice lacking HO-1 in myeloid compartment. Conversely, exogenous carbon monoxide (250 ppm) increased IL-1ß levels and suppressed cell proliferation in the prostates. Carbon monoxide did not affect the number of infiltrating CD45+ cells in the prostates of E. coli- or phosphate-buffered saline-treated mice. Interestingly, immunomodulatory effects of HO-1 and/or carbon monoxide correlated with early induction of the long-chain acyl-CoA synthetase 1 (ACSL1). ACSL1 levels were elevated in response to E. coli treatment, and macrophage-expressed ACSL1 was in part required for controlling of IL-1ß expression and prostate cancer cell colony growth in soft agar. These results suggest that HO-1 and/or carbon monoxide might play a distinctive role in modulating prostate inflammation, cell proliferation, and IL-1ß levels in part via an ACSL1-mediated pathway.


Subject(s)
Escherichia coli Infections/complications , Heme Oxygenase-1/metabolism , Heme/metabolism , Inflammation/immunology , Lipid Metabolism/immunology , Membrane Proteins/metabolism , Prostate/immunology , Animals , Bilirubin/metabolism , Carbon Monoxide/metabolism , Cell Proliferation , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Escherichia coli/immunology , Escherichia coli Infections/microbiology , Heme Oxygenase-1/genetics , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Prostate/metabolism , Prostate/microbiology , Prostate/pathology , Signal Transduction
10.
J Pharm Sci ; 109(1): 277-283, 2020 01.
Article in English | MEDLINE | ID: mdl-31216452

ABSTRACT

Recombinant human erythropoietin (rHuEPO) as a glycoprotein growth factor has been considered a biological drug for treatment of anemic patients with chronic renal failure or who receive cancer chemotherapy. Biological activity and circulation time are 2 parameters that are important to achieve EPO's efficacy. Previous efforts for increasing EPO's efficacy have focused on glycosylation modification via adding more sialic acid antenna and generates more negative charged protein. Evidences cleared that EPO's activity increased by numbers of N-glycan moieties with presence of sialic acids at their terminus. Correlation between bioactivity and glycosylation with terminal sialylation is theoretically achieved using the calculation of the amount of charge profile of the EPO variants called "I-number." Here, we studied and compared the relationship between bioactivities of different EPOs that contained various I-numbers and the effect of their secondary and tertiary protein structures on measured in vivo efficacy. Eight recombinant EPOs batches were produced under the same condition. I-numbers found out by EPO's charge profiles determination using capillary electrophoresis and activities were studied upon erythroid precursor cell stimulation in mice. Analyzing the bioactivity, I-number, and structural studies revealed that in spite of I-number, conformational changes in protein structure and presence of aggregated species impact bioactivity substantially.


Subject(s)
Erythropoietin/chemistry , Protein Aggregates , Recombinant Proteins/chemistry , Animals , Dynamic Light Scattering , Electrophoresis, Capillary , Erythropoietin/pharmacology , Glycosylation , Injections, Subcutaneous , Mice , N-Acetylneuraminic Acid/analysis , Particle Size , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/pharmacology , Reticulocytes/drug effects
11.
Mol Neurobiol ; 56(12): 8489-8512, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31264092

ABSTRACT

Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.


Subject(s)
Lab-On-A-Chip Devices , Microfluidics , Neurodegenerative Diseases/pathology , Animals , Brain , Humans , Spheroids, Cellular/pathology , Tissue Engineering
12.
Pharmgenomics Pers Med ; 12: 59-73, 2019.
Article in English | MEDLINE | ID: mdl-31213877

ABSTRACT

Breast cancer is the fifth cause of cancer death among women worldwide and represents a global health concern due to the lack of effective therapeutic regimens that could be applied to all disease groups. Nowadays, strategies based on pharmacogenomics constitute novel approaches that minimize toxicity while maximizing drug efficacy; this being of high importance in the oncology setting. Besides, genetic profiling of malignant tumors can lead to the development of targeted therapies to be included in effective drug regimens. Advances in molecular diagnostics have revealed that breast cancer is a multifaceted disease, characterized by inter-tumoral and intra-tumoral heterogeneity and, unlike the past, molecular classifications based on the expression of individual biomarkers have led to devising novel therapeutic strategies that improve patient survival. In this review, we report and discuss the molecular classification of breast cancer subtypes, the heterogeneity resource, and the advantages and disadvantages of current drug regimens with consideration of pharmacogenomics in response and resistance to treatment.

13.
Biosens Bioelectron ; 117: 112-128, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29890393

ABSTRACT

The rapid diagnosis of pathogens is crucial in the early stages of treatment of diseases where the choice of the correct drug can be critical. Although conventional cell culture-based techniques have been widely utilized in clinical applications, newly introduced optical-based, microfluidic chips are becoming attractive. The advantages of the novel methods compared to the conventional techniques comprise more rapid diagnosis, lower consumption of patient sample and valuable reagents, easy application, and high reproducibility in the detection of pathogens. The miniaturized channels used in microfluidic systems simulate interactions between cells and reagents in microchannel structures, and evaluate the interactions between biological moieties to enable diagnosis of microorganisms. The overarching goal of this review is to provide a summary of the development of microfluidic biochips and to comprehensively discuss different applications of microfluidic biochips in the detection of pathogens. New types of microfluidic systems and novel techniques for viral pathogen detection (e.g. HIV, HVB, ZIKV) are covered. Next generation techniques relying on high sensitivity, specificity, lower consumption of precious reagents, suggest that rapid generation of results can be achieved via optical based detection of bacterial cells. The introduction of smartphones to replace microscope based observation has substantially improved cell detection, and allows facile data processing and transfer for presentation purposes.


Subject(s)
Bacterial Infections/diagnosis , Biosensing Techniques/trends , Microfluidic Analytical Techniques , Point-of-Care Systems/trends , Virus Diseases/diagnosis , Humans , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Reproducibility of Results
14.
Analyst ; 143(14): 3249-3283, 2018 Jul 21.
Article in English | MEDLINE | ID: mdl-29924108

ABSTRACT

Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.


Subject(s)
Colorimetry , Metal Nanoparticles , Gold , Nanocomposites , Silicon Dioxide , Silver
15.
Open Forum Infect Dis ; 4(4): ofx207, 2017.
Article in English | MEDLINE | ID: mdl-29226170

ABSTRACT

BACKGROUND: Mismanagement of asymptomatic patients with positive urine cultures (referred to as asymptomatic bacteriuria [ASB] in the literature) promotes antimicrobial resistance and results in unnecessary antimicrobial-related adverse events and increased health care costs. METHODS: We conducted a systematic review and meta-analysis of studies that reported on the rate of inappropriate ASB treatment published from 2004 to August 2016. The appropriateness of antimicrobial administration was based on guidelines published by the Infectious Diseases Society of America. RESULTS: A total of 2142 nonduplicate articles were identified, and among them 30 fulfilled our inclusion criteria. The pooled prevalence of antimicrobial treatment among 4129 cases who did not require treatment was 45% (95% CI, 39-50). Isolation of gram-negative pathogens (odds ratio [OR], 3.58; 95% CI, 2.12-6.06), pyuria (OR, 2.83; 95% CI, 1.9-4.22), nitrite positivity (OR, 3.83; 95% CI, 2.24-6.54), and female sex (OR, 2.11; 95% CI, 1.46-3.06) increased the odds of receiving treatment. The rates of treatment were higher in studies with ≥100 000 cfu/mL cutoff values compared with <10 000 cfu/mL for bacterial growth (P, .011). The implementation of educational and organizational interventions designed to eliminate the overtreatment of ASB resulted in a median absolute risk reduction of 33% (rangeARR, 16-36%, medianRRR, 53%; rangeRRR, 25-80%). CONCLUSION: The mismanagement of ASB remains extremely frequent. Female sex and the overinterpretation of certain laboratory data (positive nitrites, pyuria, isolation of gram-negative bacteria and cultures with higher microbial count) are associated with overtreatment. Even simple stewardship interventions can be particularly effective, and antimicrobial stewardship programs should focus on the challenge of differentiating true urinary tract infection from ASB.

16.
Hepatology ; 66(5): 1570-1584, 2017 11.
Article in English | MEDLINE | ID: mdl-28597951

ABSTRACT

Imbalance between T regulatory (Treg) and T effector (Teff) cells is likely to contribute to the induction and perpetuation of liver damage in autoimmune hepatitis (AIH) and autoimmune sclerosing cholangitis (AISC) either through inability of Tregs to restrain proliferation and effector cytokine production by responders or through conversion of Tregs into T helper type 1 (Th1) or type 17 (Th17) effector lymphocytes. We investigated the effect of Treg skewing on the phenotypic and functional properties of CD4+ CD127+ CD25high cells, an activated subset of Teff, in 32 patients with AIH and 20 with AISC and in 36 healthy subjects. In AIH/AISC we noted a substantial increase in peripheral blood-derived CD4+ CD127+ CD25high cells that display a Th1/Th17 phenotypic profile, as reflected by heightened interferon gamma and interleukin 17 (IL-17) production as well as by high levels of T-bet and related orphan receptor 3 expression, which is strongly correlated with disease activity. CD4+ CD127+ CD25high cells are unresponsive to low-dose IL-2 and in patients have marked proliferative ability, further enhanced by stimulation with IL-7. CD4+ CD127+ CD25high cells obtained from CD4+ cells exposed to Treg polarizing conditions display enhanced IL-10 production; up-regulate CD49b and LAG-3, markers of T regulatory 1 cells; and effectively suppress responder cell proliferation in both healthy subjects and AIH/AISC patients through a mechanism which is dependent on interferon gamma and IL-17. The suppressive function of CD4+ CD127+ CD25high cells is maintained upon proinflammatory challenge in healthy subjects but not in AIH/AISC. CONCLUSION: Treg skewing confers activated Teff phenotypic and functional properties of T regulatory 1 cells in health and in AIH/AISC, though suppressive function is lost in patients upon proinflammatory challenge; protracted modulation of the inflammatory environment is required to attenuate the effector potential while boosting immunoregulatory properties in Teff. (Hepatology 2017;66:1570-1584).


Subject(s)
Cholangitis, Sclerosing/immunology , Hepatitis, Autoimmune/immunology , T-Lymphocytes, Regulatory/physiology , Adolescent , Adult , Child , Female , Humans , Male , Young Adult
17.
JCI Insight ; 2(9)2017 May 04.
Article in English | MEDLINE | ID: mdl-28469075

ABSTRACT

Unconjugated bilirubin (UCB), a product of heme oxidation, has known immunosuppressant properties but the molecular mechanisms, other than antioxidant effects, remain largely unexplored. We note that UCB modulates T helper type 17 (Th17) immune responses, in a manner dependent upon heightened expression of CD39 ectonucleotidase. UCB has protective effects in experimental colitis, where it enhances recovery after injury and preferentially boosts IL-10 production by colonic intraepithelial CD4+ cells. In vitro, UCB confers immunoregulatory properties on human control Th17 cells, as reflected by increased levels of FOXP3 and CD39 with heightened cellular suppressor ability. Upregulation of CD39 by Th17 cells is dependent upon ligation of the aryl hydrocarbon receptor (AHR) by UCB. Genetic deletion of CD39, as in Entpd1-/- mice, or dysfunction of AHR, as in Ahrd mice, abrogates these UCB salutary effects in experimental colitis. However, in inflammatory bowel disease (IBD) samples, UCB fails to confer substantive immunosuppressive properties upon Th17 cells, because of decreased AHR levels under the conditions tested in vitro. Immunosuppressive effects of UCB are mediated by AHR resulting in CD39 upregulation by Th17. Boosting downstream effects of AHR via UCB or enhancing CD39-mediated ectoenzymatic activity might provide therapeutic options to address development of Th17 dysfunction in IBD.

18.
Antimicrob Agents Chemother ; 60(8): 4840-52, 2016 08.
Article in English | MEDLINE | ID: mdl-27246783

ABSTRACT

The implementation of antimicrobial stewardship programs (ASPs) is a promising strategy to help address the problem of antimicrobial resistance. We sought to determine the efficacy of ASPs and their effect on clinical and economic parameters. We searched PubMed, EMBASE, and Google Scholar looking for studies on the efficacy of ASPs in hospitals. Based on 26 studies (extracted from 24,917 citations) with pre- and postimplementation periods from 6 months to 3 years, the pooled percentage change of total antimicrobial consumption after the implementation of ASPs was -19.1% (95% confidence interval [CI] = -30.1 to -7.5), and the use of restricted antimicrobial agents decreased by -26.6% (95% CI = -52.3 to -0.8). Interestingly, in intensive care units, the decrease in antimicrobial consumption was -39.5% (95% CI = -72.5 to -6.4). The use of broad-spectrum antibiotics (-18.5% [95% CI = -32 to -5.0] for carbapenems and -14.7% [95% CI = -27.7 to -1.7] for glycopeptides), the overall antimicrobial cost (-33.9% [95% CI = -42.0 to -25.9]), and the hospital length of stay (-8.9% [95% CI = -12.8 to -5]) decreased. Among hospital pathogens, the implementation of ASPs was associated with a decrease in infections due to methicillin-resistant Staphylococcus aureus (risk difference [RD] = -0.017 [95% CI = -0.029 to -0.005]), imipenem-resistant Pseudomonas aeruginosa (RD = -0.079 [95% CI = -0.114 to -0.040]), and extended-spectrum beta-lactamase Klebsiella spp. (RD = -0.104 [95% CI = -0.153 to -0.055]). Notably, these improvements were not associated with adverse outcomes, since the all-cause, infection-related 30-day mortality and infection rates were not significantly different after implementation of an ASP (RD = -0.001 [95% CI = -0.009 to 0.006], RD = -0.005 [95% CI = -0.016 to 0.007], and RD = -0.045% [95% CI = -0.241 to 0.150], respectively). Hospital ASPs result in significant decreases in antimicrobial consumption and cost, and the benefit is higher in the critical care setting. Infections due to specific antimicrobial-resistant pathogens and the overall hospital length of stay are improved as well. Future studies should focus on the sustainability of these outcomes and evaluate potential beneficial long-term effects of ASPs in mortality and infection rates.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Klebsiella Infections/drug therapy , Pseudomonas Infections/drug therapy , Staphylococcal Infections/drug therapy , Carbapenems/therapeutic use , Cross Infection/metabolism , Hospitals , Humans , Intensive Care Units , Klebsiella/drug effects , Klebsiella/metabolism , Length of Stay , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...