Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Integr Environ Assess Manag ; 10(3): 415-28, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24449130

ABSTRACT

Semipolar polycyclic aromatic compounds (sPACs) are frequently found in association with homocyclic polycyclic aromatic hydrocarbons (PAHs) in substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) from coal or crude oil and products derived thereof. However, major information deficiencies exist with regard to their prevalence and their toxicological and ecotoxicological potential, persistency, and bioaccumulation characteristics. Therefore, in this work, the environmental concern and relevance of sPACs was addressed in a general, stepwise approach. First, a large list of sPACs was collected and subsequently refined by assessing their persistence, bioaccumulation, and toxicity (PBT) properties by quantitative structure-activity relationship (QSAR) methods and their relevance by determining their respective frequency of occurrence. In this way, 15 priority sPACs were identified. These 15 priority sPACs were further characterized in detail with respect to their ecotoxicological properties, environmental behavior, carcinogenicity, and genotoxicity attributes. All of these 15 substances were quantified in distillate or product samples. In the next step, some principles for nomination of indicator substances, indicative for the overall content of sPACs, are derived. Data gaps on ecotoxicological endpoints preclude final conclusions, but the respective necessary supplemental tests were identified. Five of the 15 sPACs were tentatively characterized as potential substances of very high concern (SVHC) for the environment. The overall results of this study also clearly show that regulatory risk management of homocyclic PAHs within the European Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) does not address the environmental concern created by sPACs within UVCBs from coal or crude oil. The study proves the need for additional regulatory steps under REACH and suggests indicator substances for their enforcement.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Animals , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , European Union , Government Regulation , Household Articles , Humans , Hydrocarbons/chemistry , Oils/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Quantitative Structure-Activity Relationship , Risk Assessment/legislation & jurisprudence , Rubber/chemistry , Soot/chemistry
3.
Regul Toxicol Pharmacol ; 56(2): 135-42, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19883711

ABSTRACT

In Europe, limits for tolerable concentrations of "non-relevant metabolites" for active ingredients (AI) of plant protection products in drinking water between 0.1 and 10 microg/L are discussed depending on the toxicological information available. "Non-relevant metabolites" are degradation products of AIs, which do not or only partially retain the targeted toxicities of AIs. For "non-relevant metabolites" without genotoxicity (to be confirmed by testing in vitro), the application of the concept of "thresholds of toxicological concern" results in a health-based drinking water limit of 4.5 microg/L even for Cramer class III compounds, using the TTC threshold of 90 microg/person/day (divided by 10 and 2). Taking into account the thresholds derived from two reproduction toxicity data bases a drinking water limit of 3.0 microg/L is proposed. Therefore, for "non-relevant metabolites" whose drinking water concentration is below 3.0 microg/L, no toxicity testing is necessary. This work develops a toxicity assessment strategy as a basis to delineate health-based limits for "non-relevant metabolites" in ground and drinking water. Toxicological testing is recommended to investigate, whether the metabolites are relevant or not, based on the hazard properties of the parent AIs, as outlined in the SANCO Guidance document. Also, genotoxicity testing of the water metabolites is clearly recommended. In this publication, tiered testing strategies are proposed for non-relevant metabolites, when drinking water concentrations >3.0 microg/L will occur. Conclusions based on structure-activity relationships and the detailed toxicity database on the parent AI should be included. When testing in animals is required for risk assessment, key aspects are studies along OECD-testing guidelines with "enhanced" study designs addressing additional endpoints such as reproductive toxicity and a developmental screening test to derive health-based tolerable drinking water limits with a limited number of animals. The testing strategies are similar to those used in the initial hazard assessment of high production volume (HPV) chemicals. For "non-relevant metabolites" which are also formed as products of the biotransformation of the parent AI in mammals, the proposed toxicity testing strategies uses the repeat-dose oral toxicity study combined with a reproductive/developmental screening as outlined in OECD test guidelines 407 and 422 with integration of determination of hormonal activities. For "non-relevant metabolites" not formed during biotransformation of the AI in mammals, the strategy relies on an "enhanced" 90-day oral study covering additional endpoints regarding hormonal effects and male and female fertility in combination with a prenatal developmental toxicity study (OECD test guideline 414). The integration of the results of these studies into the risk assessment process applies large minimal margins of exposure (MOEs) to compensate for the shorter duration of the studies. The results of the targeted toxicity testing will provide a science basis for setting tolerable drinking water limits for "non-relevant metabolites" based on their toxicology. Based on the recommendations given in the SANCO guidance document and the work described in this and the accompanying paper, a concise re-evaluation of the Guidance document is proposed.


Subject(s)
Plants/metabolism , Practice Guidelines as Topic/standards , Toxicity Tests/methods , Toxicity Tests/standards , Water Pollutants, Chemical/metabolism , Animals , Data Interpretation, Statistical , Female , Humans , Male , Risk Assessment , Water Pollutants, Chemical/analysis , Water Purification/methods , Water Purification/standards , Water Purification/statistics & numerical data , Water Supply/standards , Water Supply/statistics & numerical data
4.
Regul Toxicol Pharmacol ; 56(2): 126-34, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19766683

ABSTRACT

Limits for tolerable concentrations of ground water metabolites ("non-relevant metabolites" without targeted toxicities and specific classification and labeling) derived from active ingredients (AI) of plant protection products (PPPs) are discussed in the European Union. Risk assessments for "non-relevant metabolites" need to be performed when concentrations are above 0.75 microg/L. Since oral uptake is the only relevant exposure pathway for "non-relevant metabolites", risk assessment approaches as used for other chemicals with predominantly oral exposure in humans are applicable. The concept of "thresholds of toxicological concern" (TTC) defines tolerable dietary intakes for chemicals without toxicity data and is widely applied to chemicals present in food in low concentrations such as flavorings. Based on a statistical evaluation of the results of many toxicity studies and considerations of chemical structures, the TTC concept derives a maximum daily oral intake without concern of 90 microg/person/day for non-genotoxic chemicals, even for those with appreciable toxicity. When using the typical exposure assessment for drinking water contaminants (consumption of 2L of drinking water/person/day, allocation of 10% of the tolerable daily intake to drinking water), a TTC-based upper concentration limit of 4.5 microg/L for "non-relevant metabolites" in ground/drinking water is delineated. In the present publication it has been evaluated, whether this value would cover all relevant toxicities (repeated dose, reproductive and developmental, and immune effects). Taking into account, that after evaluation of specific reproduction toxicity data from chemicals and pharmaceuticals, a value of 1 microg/kgbw/day has been assessed as to cover developmental and reproduction toxicity, a TTC value of 60 microg/person/day was assessed as to represent a safe value. Based on these reasonable worst case assumptions, a TTC-derived threshold of 3 microg/L in drinking water is derived. When a non-relevant metabolite is present in concentration below 3 microg/L, animal testing for toxicity is not considered necessary for a compound-specific risk assessment since the application of the TTC covers all relevant toxicities to be considered in such assessment and any health risk resulting from these exposures is very low.


Subject(s)
Plants/metabolism , Soil Pollutants/metabolism , Water Pollutants, Chemical/metabolism , Water Supply/standards , Animals , Environmental Monitoring/methods , Environmental Monitoring/standards , Humans , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Water Purification/standards , Water Supply/analysis
5.
Regul Toxicol Pharmacol ; 37(1): 92-104, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12662913

ABSTRACT

Uncertainty in risk assessment results from the lack of knowledge on toxicity to the target population for a substance. Currently used deterministic risk assessment methods yield human limit values or margins of safety (MOS) without quantitative measurements of uncertainty. Qualitative and quantitative uncertainty analysis would enable risk managers to better judge the consequences of different management options. This article discusses sources of uncertainty and possibilities for quantification of uncertainty associated with different steps in the risk assessment of non-carcinogenic health effects. Knowledge gaps causing uncertainty in risk assessment are overcome by extrapolation. Distribution functions for extrapolation factors are based on empirical data and provide information about the extent of uncertainty introduced by these factors. Whereas deterministic methods can account only qualitatively for uncertainty of the resulting human limit value, probabilistic risk assessment methods are able to quantify several aspects of uncertainty. However, there is only limited experience with these methods in practice. Their acceptance and future application will depend on the establishment of evidence based distribution functions, flexibility and practicability of the methods, and the unambiguity of the results.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Health , Risk Assessment/methods , Uncertainty , Animals , Humans , Models, Statistical , Pharmaceutical Preparations , Risk Assessment/statistics & numerical data , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...