Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Genomics ; 21(1): 848, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33256610

ABSTRACT

BACKGROUND: Distichiasis, an ocular disorder in which aberrant cilia (eyelashes) grow from the opening of the Meibomian glands of the eyelid, has been reported in Friesian horses. These misplaced cilia can cause discomfort, chronic keratitis, and corneal ulceration, potentially impacting vision due to corneal fibrosis, or, if secondary infection occurs, may lead to loss of the eye. Friesian horses represent the vast majority of reported cases of equine distichiasis, and as the breed is known to be affected with inherited monogenic disorders, this condition was hypothesized to be a simply inherited Mendelian trait. RESULTS: A genome wide association study (GWAS) was performed using the Axiom 670 k Equine Genotyping array (MNEc670k) utilizing 14 cases and 38 controls phenotyped for distichiasis. An additive single locus mixed linear model (EMMAX) approach identified a 1.83 Mb locus on ECA5 and a 1.34 Mb locus on ECA13 that reached genome-wide significance (pcorrected = 0.016 and 0.032, respectively). Only the locus on ECA13 withstood replication testing (p = 1.6 × 10- 5, cases: n = 5 and controls: n = 37). A 371 kb run of homozygosity (ROH) on ECA13 was found in 13 of the 14 cases, providing evidence for a recessive mode of inheritance. Haplotype analysis (hapQTL) narrowed the region of association on ECA13 to 163 kb. Whole-genome sequencing data from 3 cases and 2 controls identified a 16 kb deletion within the ECA13 associated haplotype (ECA13:g.178714_195130del). Functional annotation data supports a tissue-specific regulatory role of this locus. This deletion was associated with distichiasis, as 18 of the 19 cases were homozygous (p = 4.8 × 10- 13). Genotyping the deletion in 955 horses from 54 different breeds identified the deletion in only 11 non-Friesians, all of which were carriers, suggesting that this could be causal for this Friesian disorder. CONCLUSIONS: This study identified a 16 kb deletion on ECA13 in an intergenic region that was associated with distichiasis in Friesian horses. Further functional analysis in relevant tissues from cases and controls will help to clarify the precise role of this deletion in normal and abnormal eyelash development and investigate the hypothesis of incomplete penetrance.


Subject(s)
Eyelid Diseases/veterinary , Eyelids/pathology , Genome-Wide Association Study , Horse Diseases/genetics , Animals , Eyelid Diseases/genetics , Haplotypes , Horses , Phenotype , Whole Genome Sequencing
3.
Genes (Basel) ; 11(1)2019 12 18.
Article in English | MEDLINE | ID: mdl-31861495

ABSTRACT

One of the primary aims of the Functional Annotation of ANimal Genomes (FAANG) initiative is to characterize tissue-specific regulation within animal genomes. To this end, we used chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to map four histone modifications (H3K4me1, H3K4me3, H3K27ac, and H3K27me3) in eight prioritized tissues collected as part of the FAANG equine biobank from two thoroughbred mares. Data were generated according to optimized experimental parameters developed during quality control testing. To ensure that we obtained sufficient ChIP and successful peak-calling, data and peak-calls were assessed using six quality metrics, replicate comparisons, and site-specific evaluations. Tissue specificity was explored by identifying binding motifs within unique active regions, and motifs were further characterized by gene ontology (GO) and protein-protein interaction analyses. The histone marks identified in this study represent some of the first resources for tissue-specific regulation within the equine genome. As such, these publicly available annotation data can be used to advance equine studies investigating health, performance, reproduction, and other traits of economic interest in the horse.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Regulatory Elements, Transcriptional , Sequence Analysis, DNA/methods , Animals , Genome , Histone Code , Horses , Molecular Sequence Annotation , Organ Specificity
4.
Anim Genet ; 49(6): 564-570, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30311254

ABSTRACT

The Functional Annotation of Animal Genomes (FAANG) project aims to identify genomic regulatory elements in both sexes across multiple stages of development in domesticated animals. This study represents the first stage of the FAANG project for the horse, Equus caballus. A biobank of 80 tissue samples, two cell lines and six body fluids was created from two adult Thoroughbred mares. Ante-mortem assessments included full physical examinations, lameness, ophthalmologic and neurologic evaluations. Complete blood counts and serum biochemistries were also performed. At necropsy, in addition to tissue samples, aliquots of serum, ethylenediaminetetraacetic acid (EDTA) plasma, heparinized plasma, cerebrospinal fluid, synovial fluid, urine and microbiome samples from all regions of the gastrointestinal and urogenital tracts were collected. Epidermal keratinocytes and dermal fibroblasts were cultured from skin samples. All tissues were grossly and histologically evaluated by a board-certified veterinary pathologist. The results of the clinical and pathological evaluations identified subclinical eosinophilic and lymphocytic infiltration throughout the length of the gastrointestinal tract as well as a mild clinical lameness in both animals. Each sample was cryo-preserved in multiple ways, and nuclei were extracted from selected tissues. These samples represent the first published systemically healthy equine-specific biobank with extensive clinical phenotyping ante- and post-mortem. The tissues in the biobank are intended for community-wide use in the functional annotation of the equine genome. The use of the biobank will improve the quality of the reference annotation and allow all equine researchers to elucidate unknown genomic and epigenomic causes of disease.


Subject(s)
Biological Specimen Banks , Genomics , Horses/genetics , Animals , Female , Phenotype
5.
J Anim Sci ; 93(11): 5128-43, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26641033

ABSTRACT

The genome sequence was obtained from 270 sires used in the Germplasm Evaluation (GPE) project. These bulls included 154 purebred AI sires from GPE Cycle VII breeds (Hereford, Angus, Simmental, Limousin, Charolais, Gelbvieh, and Red Angus), 83 F crosses of those breeds, and 33 AI sires from 8 other breeds. The exome capture sequence targeting coding regions of the genome was obtained from 176 of these bulls. Sequence reads were mapped to the UMD 3.1 bovine genome assembly; a mean of 2.5-fold (x) coverage per bull was obtained from the genomic sequence, and the targeted exons were covered at a mean of 20.0x. Over 28.8 million biallelic sequence variants were detected where each allele was present in at least 3 different bulls. These included 22.0 million previously reported variants and 94.1% of the 774,660 autosomal and BTA X SNP on the BovineHD BeadChip assay (HD). More than 92% of the variants detected in targeted exons were also detected from the low-coverage genome sequence. Less than 1% of the variants detected from the combined genome and exome sequence occurred in annotated protein-coding sequences and 5' and 3' untranslated regions (UTR) surrounding the 19,994 annotated protein coding regions. Variation was detected in the coding sequence or UTR of 96.8% of the genes: loss-of-function variants were predicted for 3,298 genes, 14,973 contained nonsynonymous variants, 11,276 had variation in UTR, and 17,721 genes contained synonymous variants. Minor allele frequencies (MAF) were <0.05 for 47.8% of the coding sequence and UTR variants, and MAF distributions were skewed toward low MAF. In contrast, 11.1% of the HD SNP detected in these bulls had MAF < 0.05, and the distribution was skewed toward higher MAF. Genes involved in immune system processes and immune response were overrepresented among those genes containing high MAF loss-of-function and nonsynonymous polymorphisms. Detected variants were submitted to the National Center for Biotechnology Information genetic variation database (dbSNP) under the handle MARC, batch GPE_Bull_GenEx.


Subject(s)
Polymorphism, Genetic , Alleles , Animals , Base Sequence , Breeding , Cattle , Chromosome Mapping , Gene Frequency , Genomics , Male
6.
Science ; 293(5529): 489-93, 2001 Jul 20.
Article in English | MEDLINE | ID: mdl-11452081

ABSTRACT

Variation within genes has important implications for all biological traits. We identified 3899 single nucleotide polymorphisms (SNPs) that were present within 313 genes from 82 unrelated individuals of diverse ancestry, and we organized the SNPs into 4304 different haplotypes. Each gene had several variable SNPs and haplotypes that were present in all populations, as well as a number that were population-specific. Pairs of SNPs exhibited variability in the degree of linkage disequilibrium that was a function of their location within a gene, distance from each other, population distribution, and population frequency. Haplotypes generally had more information content (heterozygosity) than did individual SNPs. Our analysis of the pattern of variation strongly supports the recent expansion of the human population.


Subject(s)
Genetic Variation , Haplotypes , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Alleles , Animals , Asian People/genetics , Black People/genetics , Dinucleoside Phosphates/genetics , Evolution, Molecular , Female , Heterozygote , Hispanic or Latino/genetics , Humans , Male , Mutation , Pan troglodytes/genetics , White People/genetics , X Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...