Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 58(2): N13-23, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23257608

ABSTRACT

Technical quality assurance (QA) is one of the key issues in breast cancer screening protocols. For this QA task, three different methods are commonly used to assess image quality. The European protocol suggests a contrast-detail phantom (e.g. the CDMAM phantom), while in North America the American College of Radiology (ACR) accreditation phantom is proposed. Alternatively, phantoms based on image quality parameters from applied system theory such as the noise-equivalent number of quanta (NEQ) are applied (e.g. the PAS 1054 phantom). The aim of this paper was to correlate the changes in the output of the three evaluation methods (CDMAM, ACR and NEQ) with changes in dose. We varied the time-current product within a range of clinically used values (40-140 mAs, corresponding to 3.5-12.4 mGy entrance dose and detector dose of 32-110 µGy). For the ACR phantom, the examined parameter was the number of detected objects. With the CDMAM phantom we chose the diameters 0.10, 0.13, 0.20, 0.31 and 0.5 mm and recorded the threshold thicknesses. With respect to the third method, we evaluated the NEQ at typical spatial frequencies to calculate the relative changes in NEQ. Plotting NEQ versus dose increment shows a linear relationship and can be described by a linear function (with R > 0.99). Every manually selectable current- time product increment can be detected. With the ACR phantom, the number of detected objects increases only in the lower dose range and reaches saturation at about 9 mGy entrance dose (80 µGy detector dose). The CDMAM can detect a 50% increase in dose over the examined dose range with all five diameters, although the increases of threshold thickness are not monotonous. We conclude that an NEQ-based method has the potential to replace the established detail phantom methods to detect dose changes in the course of QA.


Subject(s)
Mammography/instrumentation , Phantoms, Imaging , Radiation Dosage , Radiographic Image Enhancement/instrumentation , Mammography/standards , Quality Control , Radiographic Image Enhancement/standards
2.
J Phys Condens Matter ; 21(30): 305401, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-21828549

ABSTRACT

Novel ternary compounds, M(2)Pd(14+x)B(5-y) (M =  La, Ce, Pr, Nd, Sm, Eu, Gd, Lu, Th; x∼0.9, y∼0.1), have been synthesized by arc melting. The crystal structures of Nd(2)Pd(14+x)B(5-y) and Th(2)Pd(14+x)B(5-y) were determined from x-ray single-crystal data and both are closely related to the structure type of Sc(4)Ni(29)B(10). All compounds were characterized by Rietveld analyses and found to be isotypic with the Nd(2)Pd(14+x)B(5-y) type. Measurements of the temperature dependent susceptibility and specific heat as well as the temperature and field dependent resistivity were employed to derive basic information on bulk properties of these compounds. The electrical resistivity of M(2)Pd(14+x)B(5-y), in general, is characterized by small RRR (residual resistance ratio) values originating from defects inherent to the crystal structure. Whereas the compounds based on Ce, Nd, Sm and Gd exhibit magnetic order, those based on Pr and Eu seem to be non-magnetic, at least down to 400 mK. While the non-magnetic ground state of the Pr based compound is a consequence of crystalline electric field effects in the context of the non-Kramers ion Pr, the lack of magnetic order in the case of the Eu based compound results from an intermediate valence state of the Eu ion.

3.
Phys Rev Lett ; 99(21): 217001, 2007 Nov 23.
Article in English | MEDLINE | ID: mdl-18233241

ABSTRACT

Combining experiments and ab initio models we report on SrPt4Ge12 and BaPt4Ge12 as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge atoms. Below T(c)=5.35 and 5.10 K for BaPt4Ge12 and SrPt4Ge12, respectively, electron-phonon coupled superconductivity emerges, ascribed to intrinsic features of the Pt-Ge framework, where Ge-p states dominate the electronic structure at the Fermi energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...