Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 15: 644921, 2021.
Article in English | MEDLINE | ID: mdl-34349629

ABSTRACT

The antidepressant actions of deep brain stimulation (DBS) are associated with progressive neuroadaptations within the mood network, modulated in part, by neurotrophic mechanisms. We investigated the antidepressant-like effects of chronic nucleus accumbens (NAc) DBS and its association with change in glycogen synthase kinase 3 (GSK3) and mammalian target of rapamycin (mTOR) expression in the infralimbic cortex (IL), and the dorsal (dHIP) and ventral (vHIP) subregions of the hippocampus of antidepressant resistant rats. Antidepressant resistance was induced via daily injection of adrenocorticotropic hormone (ACTH; 100 µg/day; 15 days) and confirmed by non-response to tricyclic antidepressant treatment (imipramine, 10 mg/kg). Portable microdevices provided continuous bilateral NAc DBS (130 Hz, 200 µA, 90 µs) for 7 days. A control sham electrode group was included, together with ACTH- and saline-treated control groups. Home cage monitoring, open field, sucrose preference, and, forced swim behavioral tests were performed. Post-mortem levels of GSK3 and mTOR, total and phosphorylated, were determined with Western blot. As previously reported, ACTH treatment blocked the immobility-reducing effects of imipramine in the forced swim test. In contrast, treatment with either active DBS or sham electrode placement in the NAc significantly reduced forced swim immobility time in ACTH-treated animals. This was associated with increased homecage activity in the DBS and sham groups relative to ACTH and saline groups, however, no differences in locomotor activity were observed in the open field test, nor were any group differences seen for sucrose consumption across groups. The antidepressant-like actions of NAc DBS and sham electrode placements were associated with an increase in levels of IL and vHIP phospho-GSK3ß and phospho-mTOR, however, no differences in these protein levels were observed in the dHIP region. These data suggest that early response to electrode placement in the NAc, irrespective of whether active DBS or sham, has antidepressant-like effects in the ACTH-model of antidepressant resistance associated with distal upregulation of phospho-GSK3ß and phospho-mTOR in the IL and vHIP regions of the mood network.

2.
Neurosci Biobehav Rev ; 92: 7-15, 2018 09.
Article in English | MEDLINE | ID: mdl-29758232

ABSTRACT

Patients with mood disorders are at increased risk for metabolic dysfunction. Co-occurrence of the two conditions is typically associated with a more severe disease course and poorer treatment outcomes. The specific pathophysiological mechanisms underlying this bidirectional relationship between mood and metabolic dysfunction remains poorly understood. However, it is likely that impairment of metabolic processes within the brain play a critical role. The insulin signaling pathway mediates metabolic homeostasis and is important in the regulation of neurotrophic and synaptic plasticity processes, including those involved in neurodegenerative diseases like Alzheimer's. Thus, insulin signaling in the brain may serve to link metabolic function and mood. Central insulin signaling is mediated through locally secreted insulin and widespread insulin receptor expression. Here we review the preclinical and clinical data addressing the relationships between central insulin signaling, cellular metabolism, neurotrophic processes, and mood regulation, including key points of mechanistic overlap. These relationships have important implications for developing biomarker-based diagnostics and precision medicine approaches to treat severe mood disorders.


Subject(s)
Biomarkers/metabolism , Brain/metabolism , Insulin/metabolism , Mood Disorders/pathology , Homeostasis , Humans , Insulin Resistance/physiology , Metabolic Diseases/etiology , Mood Disorders/complications
3.
IEEE Trans Neural Syst Rehabil Eng ; 25(9): 1365-1374, 2017 09.
Article in English | MEDLINE | ID: mdl-28113945

ABSTRACT

Deep brain stimulation (DBS) devices deliver electrical pulses to neural tissue through an electrode. To study the mechanisms and therapeutic benefits of deep brain stimulation, murine preclinical research is necessary. However, conducting naturalistic long-term, uninterrupted animal behavioral experiments can be difficult with bench-top systems. The reduction of size, weight, power consumption, and cost of DBS devices can assist the progress of this research in animal studies. A low power, low weight, miniature DBS device is presented in this paper. This device consists of electronic hardware and software components including a low-power microcontroller, an adjustable current source, an n-channel metal-oxide-semiconductor field-effect transistor, a coin-cell battery, electrode wires and a software program to operate the device. Evaluation of the performance of the device in terms of battery lifetime and device functionality through bench and in vivo tests was conducted. The bench test revealed that this device can deliver continuous stimulation current pulses of strength [Formula: see text], width [Formula: see text], and frequency 130 Hz for over 22 days. The in vivo tests demonstrated that chronic stimulation of the nucleus accumbens (NAc) with this device significantly increased psychomotor activity, together with a dramatic reduction in anxiety-like behavior in the elevated zero-maze test.


Subject(s)
Anxiety/prevention & control , Anxiety/physiopathology , Behavior, Animal , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/veterinary , Signal Processing, Computer-Assisted/instrumentation , Animals , Anxiety/diagnosis , Electric Power Supplies , Equipment Design/veterinary , Equipment Failure Analysis , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5250-5253, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269448

ABSTRACT

This paper presents a closed-loop optogenetic stimulation device to achieve online modulation of neurons. The device is designed to be mountable on small rodents in pre-clinical settings. Considering the size of rodents and the need for portability, a single-piece self-contained device is developed which allows real-time photostimulation based on detected neuronal states. It consists of three components: a neural recorder, a control algorithm, and an optogenetic stimulator. The neural recorder which is realized by analogue circuitry measures the neural signal. The on-off control algorithm analyses the neural signal and controls the stimulation of the target neurons. The optogenetic stimulator performs sampling and digitization of the detected neural signal, runs the control algorithm, and manages the operation of the light source. The configurable neural recorder is capable of 64 dB amplification in the frequency range of 300 Hz to 6 KHz. The outcome of bench testing of the device is reported. The device is portable and headmountable which makes it suitable for use with small rodents in pre-clinical trials.


Subject(s)
Optogenetics/instrumentation , Algorithms , Electric Stimulation , Neurons/physiology
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1814-1817, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28324953

ABSTRACT

The therapeutic actions of deep brain stimulation are not fully understood. The early inflammatory response of electrode implantation is associated with symptom relief without electrical stimulation, but is negated by anti-inflammatory drugs. Early excitotoxic necrosis and subsequent glial scarring modulate the conductivity of the tissue-electrode interface, which can provide some detail into the inflammatory response of individual patients. The feasibility of this was demonstrated by measuring resistance values across a bipolar electrode which was unilaterally implanted into the nucleus accumbens of a rat while receiving continuous deep brain stimulation with a portable back-mounted device using clinical parameters (130Hz, 200µA, 90µs) for 3 days. Daily resistance values rose significantly (p<;0.0001), while hourly resistance analysis demonstrated a plateau after an initial spike in resistance, which was then followed by a steady increase (p<;0.05; p<;0.0001). We discuss that the biphasic nature of the inflammatory response may contribute to these observations and conclude that this method may translate to a safe predictive screening for more effective clinical deep brain stimulation.


Subject(s)
Deep Brain Stimulation , Nucleus Accumbens/physiology , Animals , Electric Impedance , Electric Stimulation , Electrodes , Electrodes, Implanted , Humans , Rats
6.
Med Eng Phys ; 37(10): 1020-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26318799

ABSTRACT

This paper presents the development of an energy harvesting circuit for use with a head-mountable deep brain stimulation (DBS) device. It consists of a circular planar inverted-F antenna (PIFA) and a Schottky diode-based Cockcroft-Walton 4-voltage rectifier. The PIFA has the volume of π × 10(2) × 1.5 mm(3), resonance frequency of 915 MHz, and bandwidth of 16 MHz (909-925 MHz) at a return loss of -10 dB. The rectifier offers maximum efficiency of 78% for the input power of -5 dBm at a 5 kΩ load resistance. The developed rectenna operates efficiently at 915 MHz for the input power within -15 dBm to +5 dBm. For operating a DBS device, the DC voltage of 2 V is recorded from the rectenna terminal at a distance of 55 cm away from a 26.77 dBm transmitter in free space. An in-vitro test of the DBS device is presented.


Subject(s)
Deep Brain Stimulation/instrumentation , Electrical Equipment and Supplies , Radio Waves , Animals , Equipment Design , Head , Mice , Models, Animal
7.
Neurophotonics ; 2(3): 031206, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26158015

ABSTRACT

Implementation of optogenetic techniques is a recent addition to the neuroscientists' preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices.

8.
Front Psychiatry ; 5: 34, 2014.
Article in English | MEDLINE | ID: mdl-24782789

ABSTRACT

The mood disorder prodrome is conceptualized as a symptomatic, but not yet clinically diagnosable stage of an affective disorder. Although a growing area, more focused research is needed in the pediatric population to better characterize psychopathological symptoms and biological markers that can reliably identify this very early stage in the evolution of mood disorder pathology. Such information will facilitate early prevention and intervention, which has the potential to affect a person's disease course. This review focuses on the prodromal characteristics, risk factors, and neurobiological mechanisms of mood disorders. In particular, we consider the influence of early-life stress, inflammation, and allostatic load in mediating neural mechanisms of neuroprogression. These inherently modifiable factors have known neuroadaptive and neurodegenerative implications, and consequently may provide useful biomarker targets. Identification of these factors early in the course of the disease will accordingly allow for the introduction of early interventions which augment an individual's capacity for psychological resilience through maintenance of synaptic integrity and cellular resilience. A targeted and complementary approach to boosting both psychological and physiological resilience simultaneously during the prodromal stage of mood disorder pathology has the greatest promise for optimizing the neurodevelopmental potential of those individuals at risk of disabling mood disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...