Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 24(3): 870-9, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24405701

ABSTRACT

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 µM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Subject(s)
Mycobacterium tuberculosis/drug effects , Pyridones/chemical synthesis , Thiazoles/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Urea/chemical synthesis , Urea/pharmacology , Administration, Oral , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Disease Models, Animal , Inhibitory Concentration 50 , Mice , Microbial Sensitivity Tests , Molecular Structure , Pyridones/chemistry , Pyridones/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Topoisomerase II Inhibitors/chemistry , Urea/chemistry
2.
Chembiochem ; 9(15): 2433-42, 2008 Oct 13.
Article in English | MEDLINE | ID: mdl-18803208

ABSTRACT

Glycans cover the surface of all mammalian cells. Several toxins and pathogens use these glycans to bind and infect the cell. Using a versatile modular synthetic strategy, we have developed biotinylated bi- and tetraantennary glycoconjugates to capture and detect E. coli and compared the capturing ability of these molecules to commercial polyclonal antibodies. Magnetic beads were coated with biotinylated glycoconjugate or antibody, and these beads were used to capture, isolate, and quantify bacterial recovery by using a luminescence assay. The glycoconjugate-coated magnetic beads outperformed antibody-coated magnetic beads in sensitivity and selectivity when compared under identical experimental conditions. Glycoconjugates could capture Escherichia coli from stagnant water, and the ability of a panel of glycoconjugates to capture a selection of pathogenic bacteria was also evaluated. To the best of our knowledge, this study represents the first comprehensive study that compares synthetic glycoconjugates and antibodies for E. coli detection. The glycoconjugates are also very stable and inexpensive. The results presented here are expected to lead to an increased interest in developing glycoconjugate-based high affinity reagents for diagnostics.


Subject(s)
Biotin/chemistry , Carbohydrates/analysis , Carbohydrates/chemistry , Escherichia coli/chemistry , Escherichia coli/isolation & purification , Antibodies/immunology , Biotinylation , Carbohydrates/chemical synthesis , Escherichia coli/ultrastructure , Magnetics , Microscopy, Electron, Scanning , Molecular Structure , Substrate Specificity
3.
J Am Chem Soc ; 130(26): 8169-71, 2008 Jul 02.
Article in English | MEDLINE | ID: mdl-18529007

ABSTRACT

We report the modular synthesis of robust, biotinylated biantennary sialylglycoconjugates and their ability to differentiate between two type A influenza strains. This is the first demonstration of glycoconjugate-based discriminatory capture and detection of two strains of intact influenza virus, in the presence of the innate enzymatic activity of viral neuraminidases. We also demonstrate a "carboassay" using glycoconjugates as capture and reporter elements, which therefore, does not require antibodies. The capture of intact influenza viruses is of potential benefit for clinical diagnostics.


Subject(s)
Glycoconjugates , Orthomyxoviridae/isolation & purification , Biotinylation , Sialic Acids , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...