Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Luminescence ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38013661

ABSTRACT

Tin oxide (SnO2 ) nanocrystalline powders doped with erbium ion (Er3+ ) in different molar ratios (0, 3, 5, and 7 mol%) were prepared using a solid-state reaction technique. These samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible absorption, visible upconversion, and near-infrared luminescence techniques. XRD analysis revealed the tetragonal rutile structure of SnO2 and the average crystallite size was about 32 nm. From Tauc's plots, it was confirmed that the substitution of Er3+ ions into the SnO2 host lattice resulted in the narrowing its band gap. Optical absorption bands at 520 and 654 nm correspond to the 4f electron transitions of Er3+ further confirming visible light absorption. Infrared luminescence spectra showed a broad band centred at 1536 nm which is assigned to the 4 I13/2 → 4 I15/2 transition of Er3+ . Visible upconverted emission spectra under 980 nm excitation exhibit a strong red luminescence with a main peak at 672 nm which is attributed to the 4 F9/2 → 4 I15/2 transition of Er3+ . Power-dependent upconversion spectra confirmed that two photons participated in the upconversion mechanism. Enhancement in the intensities of both visible and infrared luminescence was observed when raising the concentration. The results pave the way for the potential applications of these nanocrystalline powders in energy harvesting applications such as infrared light upconverting layer in solar cells, light emitting diodes, infrared broadband sources and amplifiers, and biological labelling.

2.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202460

ABSTRACT

This study focuses on the fabrication of polymer nanocomposite films using polyvinyl alcohol (PVA)/graphene quantum dots (GQDs). We investigate the relationship between the structural, thermal, and nanoscale morphological properties of these films and their photoluminescent response. Although according to X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and differential thermal analysis (DTA), the incorporation of GQDs does not significantly affect the percentage crystallinity of the PVA matrix, for a range of added GQD concentrations, atomic force microscopy (AFM) showed the formation of islands with apparent crystalline morphology on the surface of the PVA/GQD films. This observation suggests that GQDs presumably act as nucleating agents for island growth. The incorporation of GQDs also led to the formation of characteristic surface pores with increased stiffness and frictional contrast, as indicated by ultrasonic force microscopy (UFM) and frictional force microscopy (FFM) data. The photoluminescence (PL) spectra of the films were found to depend both on the amount of GQDs incorporated and on the film morphology. For GQD loads >1.2%wt, a GQD-related band was observed at ~1650 cm-1 in FT-IR, along with an increase in the PL band at lower energy. For a load of ~2%wt GQDs, the surface morphology was characterized by extended cluster aggregates with lower stiffness and friction than the surrounding matrix, and the PL signal decreased.

SELECTION OF CITATIONS
SEARCH DETAIL
...