Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Adv ; 37(6): 107395, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31071430

ABSTRACT

Plant oil based industrial oleochemistry leads to a large side stream of crude glycerol, which offers itself as a low price carbon source for microbial chemical production. Compared to sugar, glycerol is more reduced and less microorganisms are able to use it as carbon source. An interesting feature of glycerol conversion is that many organisms cannot use it as carbon source at all, but they readily use it as electron sink under anaerobic conditions. In any case the number of pathways by which glycerol enters the microbial metabolism is quite limited. Having said this, an interesting variety of products of industrial relevance is accumulated by naturally occurring microorganisms which can use glycerol. These chemicals range from fuels and solvents to polymer precursors up to food additives. The limited number of metabolic pathways and the manageable amount of products allow to highlight the importance of tapping the outstanding resource of biodiversity for industrial purposes. The interplay of microbial biodiversity, metabolic engineering and bioprocess engineering is key for economic success in industrial microbiology. In this article we shed light on the biodiversity of naturally glycerol consuming microorganisms and their impact and importance on microbial chemical production.


Subject(s)
Biodiversity , Industrial Microbiology , Carbohydrates , Glycerol , Metabolic Engineering
2.
Biotechnol Bioeng ; 114(12): 2807-2817, 2017 12.
Article in English | MEDLINE | ID: mdl-28802003

ABSTRACT

Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high-value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil-derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost-competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low-cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a ß-glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L-LA in single-step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost-sustainable consolidated bioprocessing of cellulose into optically pure LA.


Subject(s)
Cellulose/analogs & derivatives , Dextrins/metabolism , Genetic Enhancement/methods , Lactic Acid/biosynthesis , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Recombinant Proteins/metabolism , Recombination, Genetic/genetics , Cellulose/genetics , Cellulose/metabolism , Dextrins/genetics , Lactic Acid/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...