Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; 16(1): e20284, 2023 03.
Article in English | MEDLINE | ID: mdl-36411598

ABSTRACT

Improving water use efficiency (WUE) for soybean [Glycine max (L.) Merr.] through selection for high carbon isotope (C13) ratio may increase drought tolerance, but increased WUE may limit growth in productive environments. An ideal genotype would be plastic for C13 ratio; that is, be able to alter C13 ratio in response to the environment. Our objective was to identify genomic regions associated with C13 ratio plasticity, C13 ratio stability, and overall C13 ratio in two panels of diverse Maturity Group IV soybean accessions. A second objective was to identify accessions that differed in their C13 ratio plasticity. Panel 1 (205 accessions) was evaluated in seven irrigated and four drought environments, and Panel 2 (373 accessions) was evaluated in four environments. Plasticity was quantified as the slope from regressing C13 ratio of individual genotypes against an environmental index calculated based on the mean within and across environments. The regression intercept was considered a measure of C13 ratio over all environments, and the root mean square error was considered a measure of stability. Combined over both panels, genome-wide association mapping (GWAM) identified 19 single nucleotide polymorphisms (SNPs) for plasticity, 39 SNPs for C13 ratio, and 16 SNPs for stability. Among these SNPs, 71 candidate genes had annotations associated with transpiration or water conservation and transport, root development, root hair elongation, and stomatal complex morphogenesis. The genomic regions associated with plasticity and stability identified in the current study will be a useful resource for implementing genomic selection for improving drought tolerance in soybean.


Subject(s)
Genome-Wide Association Study , Glycine max , Glycine max/genetics , Chromosome Mapping , Carbon Isotopes , Genomics
2.
BMC Plant Biol ; 22(1): 87, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35219296

ABSTRACT

BACKGROUND: Genomic selection is a powerful tool in plant breeding. By building a prediction model using a training set with markers and phenotypes, genomic estimated breeding values (GEBVs) can be used as predictions of breeding values in a target set with only genotype data. There is, however, limited information on how prediction accuracy of genomic prediction can be optimized. The objective of this study was to evaluate the performance of 11 genomic prediction models across species in terms of prediction accuracy for two traits with different heritabilities using several subsets of markers and training population proportions. Species studied were maize (Zea mays, L.), soybean (Glycine max, L.), and rice (Oryza sativa, L.), which vary in linkage disequilibrium (LD) decay rates and have contrasting genetic architectures. RESULTS: Correlations between observed and predicted GEBVs were determined via cross validation for three training-to-testing proportions (90:10, 70:30, and 50:50). Maize, which has the shortest extent of LD, showed the highest prediction accuracy. Amongst all the models tested, Bayes B performed better than or equal to all other models for each trait in all the three crops. Traits with higher broad-sense and narrow-sense heritabilities were associated with higher prediction accuracy. When subsets of markers were selected based on LD, the accuracy was similar to that observed from the complete set of markers. However, prediction accuracies were significantly improved when using a subset of total markers that were significant at P ≤ 0.05 or P ≤ 0.10. As expected, exclusion of QTL-associated markers in the model reduced prediction accuracy. Prediction accuracy varied among different training population proportions. CONCLUSIONS: We conclude that prediction accuracy for genomic selection can be improved by using the Bayes B model with a subset of significant markers and by selecting the training population based on narrow sense heritability.


Subject(s)
Glycine max/genetics , Models, Genetic , Oryza/genetics , Zea mays/genetics , Genetic Markers , Genome, Plant , Linkage Disequilibrium , Oryza/physiology , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Glycine max/physiology , Zea mays/physiology
3.
Front Plant Sci ; 12: 698116, 2021.
Article in English | MEDLINE | ID: mdl-34335664

ABSTRACT

Drought causes significant soybean [Glycine max (L.) Merr.] yield losses each year in rain-fed production systems of many regions. Genetic improvement of soybean for drought tolerance is a cost-effective approach to stabilize yield under rain-fed management. The objectives of this study were to confirm previously reported soybean loci and to identify novel loci associated with canopy wilting (CW) using a panel of 200 diverse maturity group (MG) IV accessions. These 200 accessions along with six checks were planted at six site-years using an augmented incomplete block design with three replications under irrigated and rain-fed treatments. Association mapping, using 34,680 single nucleotide polymorphisms (SNPs), identified 188 significant SNPs associated with CW that likely tagged 152 loci. This includes 87 SNPs coincident with previous studies that likely tagged 68 loci and 101 novel SNPs that likely tagged 84 loci. We also determined the ability of genomic estimated breeding values (GEBVs) from previous research studies to predict CW in different genotypes and environments. A positive relationship (P ≤ 0.05;0.37 ≤ r ≤ 0.5) was found between observed CW and GEBVs. In the vicinity of 188 significant SNPs, 183 candidate genes were identified for both coincident SNPs and novel SNPs. Among these 183 candidate genes, 57 SNPs were present within genes coding for proteins with biological functions involved in plant stress responses. These genes may be directly or indirectly associated with transpiration or water conservation. The confirmed genomic regions may be an important resource for pyramiding favorable alleles and, as candidates for genomic selection, enhancing soybean drought tolerance.

4.
Theor Appl Genet ; 133(7): 2141-2155, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32296861

ABSTRACT

KEY MESSAGE: QTL analysis identified 16 QTLs, grouped in eight loci on seven soybean chromosomes that were associated with carbon isotope ratio (δ13C) in a biparental recombinant inbred population. Drought is a major limitation to soybean yield, and the frequency of drought stress is likely to increase under future climatic scenarios. Water use efficiency (WUE) is associated with drought tolerance, and carbon isotope ratio (δ13C) is positively correlated with WUE. In this study, 196 F6-derived recombinant inbred lines from a cross of PI 416997 (high WUE) × PI 567201D (low WUE) were evaluated in four environments to identify genomic regions associated with δ13C. There were positive correlations of δ13C values between different environments (0.67 ≤ r ≤ 0.78). Genotype, environment, and genotype × environment interactions had significant effects on δ13C. Narrow sense heritability of δ13C was 90% when estimated across environments. There was a total of 16 QTLs on seven chromosomes with individual QTLs explaining between 2.5 and 29.9% of the phenotypic variation and with additive effects ranging from 0.07 to 0.22‰. These 16 QTLs likely identified eight loci based on their overlapping confidence intervals. Of these eight loci, two loci on chromosome 20 (Gm20) were detected in at least three environments and were considered as stable QTLs. Additive QTLs on Gm20 showed epistatic interactions with 10 QTLs present across nine chromosomes. Five QTLs were identified across environments and showed significant QTL × environment interactions. These findings demonstrate that additive QTLs and QTL × QTL interactions play significant roles in genetic control of the δ13C trait. Markers flanking identified QTLs may facilitate marker-assisted selection to accumulate desirable QTLs to improve WUE and drought tolerance in soybean.


Subject(s)
Carbon Isotopes/chemistry , Chromosomes, Plant , Glycine max/genetics , Quantitative Trait Loci , Chromosome Mapping , Crops, Agricultural/genetics , Crosses, Genetic , Droughts , Epistasis, Genetic , Genetic Linkage , Genetic Markers , Genotype , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Rain
5.
Sci Rep ; 10(1): 5166, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198467

ABSTRACT

Nitrogen (N) plays a key role in plants because it is a major component of RuBisCO and chlorophyll. Hence, N is central to both the dark and light reactions of photosynthesis. Genotypic variation in canopy greenness provides insights into the variation of N and chlorophyll concentration, photosynthesis rates, and N2 fixation in legumes. The objective of this study was to identify significant loci associated with the intensity of greenness of the soybean [Glycine max (L.) Merr.] canopy as determined by the Dark Green Color Index (DGCI). A panel of 200 maturity group IV accessions was phenotyped for canopy greenness using DGCI in three environments. Association mapping identified 45 SNPs that were significantly (P ≤ 0.0003) associated with DGCI in three environments, and 16 significant SNPs associated with DGCI averaged across all environments. These SNPs likely tagged 43 putative loci. Out of these 45 SNPs, eight were present in more than one environment. Among the identified loci, 21 were located in regions previously reported for N traits and ureide concentration. Putative loci that were coincident with previously reported genomic regions may be important resources for pyramiding favorable alleles for improved N and chlorophyll concentrations, photosynthesis rates, and N2 fixation in soybean.


Subject(s)
Glycine max/genetics , Glycine max/metabolism , Photosynthesis/genetics , Alleles , Chlorophyll/metabolism , Fabaceae/genetics , Gene Frequency/genetics , Genome, Plant/genetics , Genome-Wide Association Study/methods , Genotype , Linkage Disequilibrium , Nitrogen/metabolism , Phenotype , Photosynthesis/physiology , Plant Leaves/metabolism , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , Glycine max/growth & development
6.
BMC Genomics ; 20(1): 618, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31357925

ABSTRACT

BACKGROUND: Selection of an appropriate statistical significance threshold in genome-wide association studies is critical to differentiate true positives from false positives and false negatives. Different multiple testing comparison methods have been developed to determine the significance threshold; however, these methods may be overly conservative and may lead to an increase in false negatives. Here, we developed an empirical formula to determine the statistical significance threshold that is based on the marker-based heritability of the trait. To develop a formula for a significance threshold, we used 45 simulated traits in soybean, maize, and rice that varied in both broad sense heritability and the number of QTLs. RESULTS: A formula to determine a significance threshold was developed based on a regression equation that used one independent variable, marker-based heritability, and one response variable, - log10 (P)-values. For all species, the threshold -log10 (P)-values increased as both marker-based and broad-sense heritability increased. Higher broad sense heritability in these crops resulted in higher significant threshold values. Among crop species, maize, with a lower linkage disequilibrium pattern, had higher significant threshold values as compared to soybean and rice. CONCLUSIONS: Our formula was less conservative and identified more true positive associations than the false discovery rate and Bonferroni correction methods.


Subject(s)
Genome, Plant/genetics , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
7.
Front Plant Sci ; 10: 1794, 2019.
Article in English | MEDLINE | ID: mdl-32158452

ABSTRACT

Association mapping (AM) is a powerful tool for fine mapping complex trait variation down to nucleotide sequences by exploiting historical recombination events. A major problem in AM is controlling false positives that can arise from population structure and family relatedness. False positives are often controlled by incorporating covariates for structure and kinship in mixed linear models (MLM). These MLM-based methods are single locus models and can introduce false negatives due to over fitting of the model. In this study, eight different statistical models, ranging from single-locus to multilocus, were compared for AM for three traits differing in heritability in two crop species: soybean (Glycine max L.) and maize (Zea mays L.). Soybean and maize were chosen, in part, due to their highly differentiated rate of linkage disequilibrium (LD) decay, which can influence false positive and false negative rates. The fixed and random model circulating probability unification (FarmCPU) performed better than other models based on an analysis of Q-Q plots and on the identification of the known number of quantitative trait loci (QTLs) in a simulated data set. These results indicate that the FarmCPU controls both false positives and false negatives. Six qualitative traits in soybean with known published genomic positions were also used to compare these models, and results indicated that the FarmCPU consistently identified a single highly significant SNP closest to these known published genes. Multiple comparison adjustments (Bonferroni, false discovery rate, and positive false discovery rate) were compared for these models using a simulated trait having 60% heritability and 20 QTLs. Multiple comparison adjustments were overly conservative for MLM, CMLM, ECMLM, and MLMM and did not find any significant markers; in contrast, ANOVA, GLM, and SUPER models found an excessive number of markers, far more than 20 QTLs. The FarmCPU model, using less conservative methods (false discovery rate, and positive false discovery rate) identified 10 QTLs, which was closer to the simulated number of QTLs than the number found by other models.

8.
Theor Appl Genet ; 130(10): 2203-2217, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28730464

ABSTRACT

KEY MESSAGE: Genome-wide association analysis identified 61 SNP markers for canopy wilting, which likely tagged 51 different loci. Based on the allelic effects of the significant SNPs, the slowest and fastest wilting genotypes were identified. Drought stress is a major global constraint for crop production, and slow canopy wilting is a promising trait for improving drought tolerance. The objective of this study was to identify genetic loci associated with canopy wilting and to confirm those loci with previously reported canopy wilting QTLs. A panel of 373 maturity group (MG) IV soybean genotypes was grown in four environments to evaluate canopy wilting. Statistical analysis of phenotype indicated wide variation for the trait, with significant effects of genotype (G), environment (E), and G × E interaction. Over 42,000 SNP markers were obtained from the Illumina Infinium SoySNP50K iSelect SNP Beadchip. After filtration for quality control, 31,260 SNPs with a minor allele frequency (MAF) ≥5% were used for association mapping using the Fixed and random model Circulating Probability Unification (FarmCPU) model. There were 61 environment-specific significant SNP-canopy wilting associations, and 21 SNPs that associated with canopy wilting in more than one environment. There were 34 significant SNPs associated with canopy wilting when averaged across environments. Together, these SNPs tagged 23 putative loci associated with canopy wilting. Six of the putative loci were located within previously reported chromosomal regions that were associated with canopy wilting through bi-parental mapping. Several significant SNPs were located within a gene or very close to genes that had a reported biological connection to transpiration or water transport. Favorable alleles from significant SNPs may be an important resource for pyramiding genes to improve drought tolerance and for identifying parental genotypes for use in breeding programs.


Subject(s)
Droughts , Glycine max/genetics , Plant Leaves/physiology , Stress, Physiological/genetics , Chromosome Mapping , Gene Frequency , Genetic Association Studies , Genetic Markers , Genotype , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...