Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
1.
Front Immunol ; 15: 1372193, 2024.
Article in English | MEDLINE | ID: mdl-38812507

ABSTRACT

Background: Vaccine effectiveness against SARS-CoV-2 infection has been somewhat limited due to the widespread dissemination of the Omicron variant, its subvariants, and the immune response dynamics of the naturally infected with the virus. Methods: Twelve subjects between 3-17 years old (yo), vaccinated with two doses of CoronaVac®, were followed and diagnosed as breakthrough cases starting 14 days after receiving the second dose. Total IgGs against different SARS-CoV-2 proteins and the neutralizing capacity of these antibodies after infection were measured in plasma. The activation of CD4+ and CD8+ T cells was evaluated in peripheral blood mononuclear cells stimulated with peptides derived from the proteins from the wild-type (WT) virus and Omicron subvariants by flow cytometry, as well as different cytokines secretion by a Multiplex assay. Results: 2 to 8 weeks post-infection, compared to 4 weeks after 2nd dose of vaccine, there was a 146.5-fold increase in neutralizing antibody titers against Omicron and a 38.7-fold increase against WT SARS-CoV-2. Subjects showed an increase in total IgG levels against the S1, N, M, and NSP8 proteins of the WT virus. Activated CD4+ T cells showed a significant increase in response to the BA.2 subvariant (p<0.001). Finally, the secretion of IL-2 and IFN-γ cytokines showed a discreet decrease trend after infection in some subjects. Conclusion: SARS-CoV-2 infection in the pediatric population vaccinated with an inactivated SARS-CoV-2 vaccine produced an increase in neutralizing antibodies against Omicron and increased specific IgG antibodies for different SARS-CoV-2 proteins. CD4+ T cell activation was also increased, suggesting a conserved cellular response against the Omicron subvariants, whereas Th1-type cytokine secretion tended to decrease. Clinical Trial Registration: clinicaltrials.gov #NCT04992260.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , CD4-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adolescent , Child , Child, Preschool , Female , Humans , Male , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cytokines/immunology , Cytokines/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Vaccination , Follow-Up Studies
2.
Front Endocrinol (Lausanne) ; 15: 1381180, 2024.
Article in English | MEDLINE | ID: mdl-38752179

ABSTRACT

Background: The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods: To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results: The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1ß, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion: This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.


Subject(s)
Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/metabolism , Mice , Male , Prenatal Exposure Delayed Effects/metabolism , Phenotype , Behavior, Animal , Hypothyroidism/metabolism , Thyroxine/blood , Biomarkers/metabolism , Mice, Inbred C57BL , Pregnancy Complications/metabolism , Disease Models, Animal , Inflammation/metabolism , Social Behavior
3.
Front Immunol ; 15: 1364774, 2024.
Article in English | MEDLINE | ID: mdl-38629075

ABSTRACT

Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.


Subject(s)
Asthma , Hypersensitivity , Natural Killer T-Cells , Humans , Hypersensitivity/therapy , Cytokines , Immunotherapy
4.
Vaccines (Basel) ; 12(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38675736

ABSTRACT

Immunosenescence refers to age-related alterations in immune system function affecting both the humoral and cellular arm of immunity. Understanding immunosenescence and its impact on the vaccination of older adults is essential since primary vaccine responses in older individuals can fail to generate complete protection, especially vaccines targeting infections with increased incidence among the elderly, such as the respiratory syncytial virus. Here, we review clinical trials of both candidate and approved vaccines against respiratory syncytial virus (RSV) that include adults aged ≥50 years, with an emphasis on the evaluation of immunogenicity parameters. Currently, there are 10 vaccine candidates and 2 vaccines approved for the prevention of RSV in the older adult population. The number of registered clinical trials for this age group amounts to 42. Our preliminary evaluation of published results and interim analyses of RSV vaccine clinical trials indicates efficacy in older adult participants, demonstrating immunity levels that closely resemble those of younger adult participants.

5.
Front Immunol ; 15: 1341600, 2024.
Article in English | MEDLINE | ID: mdl-38482000

ABSTRACT

The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Pandemics , Kinetics , Persistent Infection
6.
Front Cell Infect Microbiol ; 14: 1297099, 2024.
Article in English | MEDLINE | ID: mdl-38495650

ABSTRACT

Introduction: Oral transmission of T. cruzi is probably the most frequent transmission mechanism in wild animals. This observation led to the hypothesis that consuming raw or undercooked meat from animals infected with T. cruzi may be responsible for transmitting the infection. Therefore, the general objective of this study was to investigate host-pathogen interactions between the parasite and gastric mucosa and the role of meat consumption from infected animals in the oral transmission of T. cruzi. Methods: Cell infectivity assays were performed on AGS cells in the presence or absence of mucin, and the roles of pepsin and acidic pH were determined. Moreover, groups of five female Balb/c mice were fed with muscle tissue obtained from mice in the acute phase of infection by the clone H510 C8C3hvir of T. cruzi, and the infection of the fed mice was monitored by a parasitemia curve. Similarly, we assessed the infective capacity of T. cruzi trypomastigotes and amastigotes by infecting groups of five mice Balb/c females, which were infected orally using a nasogastric probe, and the infection was monitored by a parasitemia curve. Finally, different trypomastigote and amastigote inoculums were used to determine their infective capacities. Adhesion assays of T. cruzi proteins to AGS stomach cells were performed, and the adhered proteins were detected by western blotting using monoclonal or polyclonal antibodies and by LC-MS/MS and bioinformatics analysis. Results: Trypomastigote migration in the presence of mucin was reduced by approximately 30%, whereas in the presence of mucin and pepsin at pH 3.5, only a small proportion of parasites were able to migrate (∼6%). Similarly, the ability of TCTs to infect AGS cells in the presence of mucin is reduced by approximately 20%. In all cases, 60-100% of the animals were fed meat from mice infected in the acute phase or infected with trypomastigotes or amastigotes developed high parasitemia, and 80% died around day 40 post-infection. The adhesion assay showed that cruzipain is a molecule of trypomastigotes and amastigotes that binds to AGS cells. LC-MS/MS and bioinformatics analysis, also confirmed that transialidase, cysteine proteinases, and gp63 may be involved in TCTs attachment or invasion of human stomach cells because they can potentially interact with different proteins in the human stomach mucosa. In addition, several human gastric mucins have cysteine protease cleavage sites. Discussion: Then, under our experimental conditions, consuming meat from infected animals in the acute phase allows the T. cruzi infection. Similarly, trypomastigotes and amastigotes could infect mice when administered orally, whereas cysteinyl proteinases and trans-sialidase appear to be relevant molecules in this infective process.


Subject(s)
Chagas Disease , Communicable Diseases , Trypanosoma cruzi , Female , Animals , Mice , Humans , Trypanosoma cruzi/metabolism , Pepsin A/metabolism , Parasitemia , Disease Models, Animal , Chromatography, Liquid , Tandem Mass Spectrometry , Chagas Disease/parasitology , Mucins
7.
Front Immunol ; 15: 1330209, 2024.
Article in English | MEDLINE | ID: mdl-38404579

ABSTRACT

Introduction: Respiratory infections are one of the leading causes of morbidity and mortality worldwide, mainly in children, immunocompromised people, and the elderly. Several respiratory viruses can induce intestinal inflammation and alterations in intestinal microbiota composition. Human metapneumovirus (HMPV) is one of the major respiratory viruses contributing to infant mortality in children under 5 years of age worldwide, and the effect of this infection at the gut level has not been studied. Methods: Here, we evaluated the distal effects of HMPV infection on intestinal microbiota and inflammation in a murine model, analyzing several post-infection times (days 1, 3, and 5). Six to eight-week-old C57BL/6 mice were infected intranasally with HMPV, and mice inoculated with a non-infectious supernatant (Mock) were used as a control group. Results: We did not detect HMPV viral load in the intestine, but we observed significant changes in the transcription of IFN-γ in the colon, analyzed by qPCR, at day 1 post-infection as compared to the control group. Furthermore, we analyzed the frequencies of different innate and adaptive immune cells in the colonic lamina propria, using flow cytometry. The frequency of monocyte populations was altered in the colon of HMPV -infected mice at days 1 and 3, with no significant difference from control mice at day 5 post-infection. Moreover, colonic CD8+ T cells and memory precursor effector CD8+ T cells were significantly increased in HMPV-infected mice at day 5, suggesting that HMPV may also alter intestinal adaptive immunity. Additionally, we did not find alterations in antimicrobial peptide expression, the frequency of colonic IgA+ plasma cells, and levels of fecal IgA. Some minor alterations in the fecal microbiota composition of HMPV -infected mice were detected using 16s rRNA sequencing. However, no significant differences were found in ß-diversity and relative abundance at the genus level. Discussion: To our knowledge, this is the first report describing the alterations in intestinal immunity following respiratory infection with HMPV infection. These effects do not seem to be mediated by direct viral infection in the intestinal tract. Our results indicate that HMPV can affect colonic innate and adaptive immunity but does not significantly alter the microbiota composition, and further research is required to understand the mechanisms inducing these distal effects in the intestine.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Child , Mice , Humans , Animals , Child, Preschool , Aged , CD8-Positive T-Lymphocytes , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Adaptive Immunity , Inflammation , Immunoglobulin A
8.
Brain Sci ; 14(1)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38248274

ABSTRACT

Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.

9.
Antiviral Res ; 222: 105783, 2024 02.
Article in English | MEDLINE | ID: mdl-38145755

ABSTRACT

The human respiratory syncytial virus (hRSV) is the leading etiologic agent causing respiratory infections in infants, children, older adults, and patients with comorbidities. Sixty-seven years have passed since the discovery of hRSV, and only a few successful mitigation or treatment tools have been developed against this virus. One of these is immunotherapy with monoclonal antibodies against structural proteins of the virus, such as Palivizumab, the first prophylactic approach approved by the Food and Drug Administration (FDA) of the USA. In this article, we discuss different strategies for the prevention and treatment of hRSV infection, focusing on the molecular mechanisms against each target that underly the rational design of antibodies against hRSV. At the same time, we describe the latest results regarding currently approved therapies against hRSV and the challenges associated with developing new candidates.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Child , Humans , Aged , Antiviral Agents/therapeutic use , Palivizumab/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Monoclonal/therapeutic use
10.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38079200

ABSTRACT

The ICEKp258.2 genomic island (GI) has been proposed as an important factor for the emergence and success of the globally spread carbapenem-resistant Klebsiella pneumoniae sequence type (ST) 258. However, a characterization of this horizontally acquired element is lacking. Using bioinformatic and experimental approaches, we found that ICEKp258.2 is not confined to ST258 and ST512, but also carried by ST3795 strains and emergent invasive multidrug-resistant pathogens from ST1519. We also identified several ICEKp258.2-like GIs spread among different K. pneumoniae STs, other Klebsiella species and even other pathogen genera, uncovering horizontal gene transfer events between different STs and bacterial genera. Also, the comparative and phylogenetic analyses of the ICEKp258.2-like GIs revealed that the most closely related ICEKp258.2-like GIs were harboured by ST11 strains. Importantly, we found that subinhibitory concentrations of antibiotics used in treating K. pneumoniae infections can induce the excision of this GI and modulate its gene expression. Our findings provide the basis for the study of ICEKp258.2 and its role in the success of K. pneumoniae ST258. They also highlight the potential role of antibiotics in the spread of ICEKp258.2-like GIs among bacterial pathogens.


Subject(s)
Anti-Bacterial Agents , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Phylogeny , Genomic Islands/genetics , Carbapenems/pharmacology
11.
Front Microbiol ; 14: 1236458, 2023.
Article in English | MEDLINE | ID: mdl-38029095

ABSTRACT

Excisable genomic islands (EGIs) are horizontally acquired genetic elements that harbor an array of genes with diverse functions. ROD21 is an EGI found integrated in the chromosome of Salmonella enterica serovar Enteritidis (Salmonella ser. Enteritidis). While this island is known to be involved in the capacity of Salmonella ser. Enteritidis to cross the epithelial barrier and colonize sterile organs, the role of most ROD21 genes remains unknown, and thus, the identification of their function is fundamental to understanding the impact of this EGI on bacterium pathogenicity. Therefore, in this study, we used a bioinformatical approach to evaluate the function of ROD21-encoded genes and delve into the characterization of SEN1990, a gene encoding a putative DNA-binding protein. We characterized the predicted structure of SEN1990, finding that this protein contains a three-stranded winged helix-turn-helix (wHTH) DNA-binding domain. Additionally, we identified homologs of SEN1990 among other members of the EARL EGIs. Furthermore, we deleted SEN1990 in Salmonella ser. Enteritidis, finding no differences in the replication or maintenance of the excised ROD21, contrary to what the previous Refseq annotation of the protein suggests. High-throughput RNA sequencing was carried out to evaluate the effect of the absence of SEN1990 on the bacterium's global transcription. We found a downregulated expression of oafB, an SPI-17-encoded acetyltransferase involved in O-antigen modification, which was restored when the deletion mutant was complemented ectopically. Additionally, we found that strains lacking SEN1990 had a reduced capacity to colonize sterile organs in mice. Our findings suggest that SEN1990 encodes a wHTH domain-containing protein that modulates the transcription of oafB from the SPI-17, implying a crosstalk between these pathogenicity islands and a possible new role of ROD21 in the pathogenesis of Salmonella ser. Enteritidis.

12.
Pathogens ; 12(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37887775

ABSTRACT

Respiratory syncytial virus (RSV) is responsible for a significant proportion of global morbidity and mortality affecting young children and older adults. In the aftermath of formalin-inactivated RSV vaccine development, the effort to develop an immunizing agent was carefully guided by epidemiologic and pathophysiological evidence of the virus, including various vaccine technologies. The pipeline of RSV vaccine development includes messenger ribonucleic acid (mRNA), live-attenuated (LAV), subunit, and recombinant vector-based vaccine candidates targeting different virus proteins. The availability of vaccine candidates of various technologies enables adjustment to the individualized needs of each vulnerable age group. Arexvy® (GSK), followed by Abrysvo® (Pfizer), is the first vaccine available for market use as an immunizing agent to prevent lower respiratory tract disease in older adults. Abrysvo is additionally indicated for the passive immunization of infants by maternal administration during pregnancy. This review presents the RSV vaccine pipeline, analyzing the results of clinical trials. The key features of each vaccine technology are also mentioned. Currently, 24 vaccines are in the clinical stage of development, including the 2 licensed vaccines. Research in the field of RSV vaccination, including the pharmacovigilance methods of already approved vaccines, promotes the achievement of successful prevention.

13.
Vaccines (Basel) ; 11(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37896930

ABSTRACT

During the COVID-19 pandemic, the importance of vaccinating children against SARS-CoV-2 was rapidly established. This study describes the safety of CoronaVac® in children and adolescents between 3- and 17-years-old in a multicenter study in Chile with two vaccine doses in a 4-week interval. For all participants, immediate adverse events (AEs), serious AEs (SAEs), and AEs of special interest (AESIs) were registered throughout the study. In the safety subgroup, AEs were recorded 28 days after each dose. COVID-19 surveillance was performed throughout the study. A total of 1139 individuals received the first and 1102 the second dose of CoronaVac®; 835 were in the safety subgroup. The first dose showed the highest number of AEs: up to 22.2% of participants reported any local and 17.1% systemic AE. AEs were more frequent in adolescents after the first dose, were transient, and mainly mild. Pain at the inoculation site was the most frequent AE for all ages. Fever was the most frequent systemic AE for 3-5 years old and headache in 6-17 years old. No SAEs or AESIs related to vaccination occurred. Most of the COVID-19 cases were mild and managed as outpatients. CoronaVac® was safe and well tolerated in children and adolescents, with different safety patterns according to age.

14.
Front Public Health ; 11: 1253762, 2023.
Article in English | MEDLINE | ID: mdl-37808972

ABSTRACT

Objectives: To assess the effectiveness of four doses of the vaccine against SARS-CoV-2 in the general population and the impact of this on the severity of the disease by age group. Methods: By using data from the health authority public data base, we build statistical models using R and the GAMLSS library to explain the behavior of new SARS-CoV-2 infections, active COVID-19 cases, ICU bed requirement total and by age group, and deaths at the national level. Results: The four doses of vaccine and at least the interaction between the first and second doses were important explanatory factors for the protective effect against COVID-19. The R2 for new cases per day was 0.5644 and for occupied ICU beds the R2 is 0.9487. For occupied ICU beds for >70 years R2 is 0.9195 and with the interaction between 4 doses as the main factor. Conclusions: Although the increase in the number of vaccine doses did not adequately explain the decrease in the number of COVID-19 cases, it explained the decrease in ICU admissions and deaths nationwide and by age group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Databases, Factual , Hospitalization
15.
Front Cell Infect Microbiol ; 13: 1229098, 2023.
Article in English | MEDLINE | ID: mdl-37753486

ABSTRACT

Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated ß-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host's susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review.


Subject(s)
Bacterial Infections , Immunosenescence , Humans , Heterochromatin , Cellular Senescence , Biomarkers
16.
Front Immunol ; 14: 1215893, 2023.
Article in English | MEDLINE | ID: mdl-37533867

ABSTRACT

Introduction: The human respiratory syncytial virus (hRSV) is responsible for most respiratory tract infections in infants. Even though currently there are no approved hRSV vaccines for newborns or infants, several candidates are being developed. rBCG-N-hRSV is a vaccine candidate previously shown to be safe in a phase I clinical trial in adults (clinicaltrials.gov identifier #NCT03213405). Here, secondary immunogenicity analyses were performed on these samples. Methods: PBMCs isolated from immunized volunteers were stimulated with hRSV or mycobacterial antigens to evaluate cytokines and cytotoxic T cell-derived molecules and the expansion of memory T cell subsets. Complement C1q binding and IgG subclass composition of serum antibodies were assessed. Results: Compared to levels detected prior to vaccination, perforin-, granzyme B-, and IFN-γ-producing PBMCs responding to stimulus increased after immunization, along with their effector memory response. N-hRSV- and mycobacterial-specific antibodies from rBCG-N-hRSV-immunized subjects bound C1q. Conclusion: Immunization with rBCG-N-hRSV induces cellular and humoral immune responses, supporting that rBCG-N-hRSV is immunogenic and safe in healthy individuals. Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/, identifier NCT03213405.


Subject(s)
Respiratory Syncytial Virus, Human , Humans , Adult , Infant, Newborn , BCG Vaccine , Immunity, Cellular , Immunization , Vaccination
17.
J Infect Dis ; 228(7): 857-867, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37572355

ABSTRACT

BACKGROUND: We sought to identify potential antigens for discerning between humoral responses elicited after vaccination with CoronaVac (a severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] inactivated vaccine), natural infection, or breakthrough infection. METHODS: Serum samples obtained from volunteers immunized with CoronaVac (2 and 3 doses), breakthrough case patients, and from convalescent individuals were analyzed to determine the immunoglobulin (Ig) G responses against 3 structural and 8 nonstructural SARS-CoV-2 antigens. RESULTS: Immunization with CoronaVac induced higher levels of antibodies against the viral membrane (M) protein compared with convalescent subjects both after primary vaccination and after a booster dose. Individuals receiving a booster dose displayed equivalent levels of IgG antibodies against the nucleocapsid (N) protein, similar to convalescent subjects. Breakthrough case patients produced the highest antibody levels against the N and M proteins. Antibodies against nonstructural viral proteins were present in >50% of the convalescent subjects. CONCLUSIONS: Vaccinated individuals elicited a different humoral response compared to convalescent subjects. The analysis of particular SARS-CoV-2 antigens could be used as biomarkers for determining infection in subjects previously vaccinated with CoronaVac.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Virion , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing , Vaccination
18.
Front Microbiol ; 14: 1198200, 2023.
Article in English | MEDLINE | ID: mdl-37426029

ABSTRACT

Sepsis is a life-threatening condition and a significant cause of preventable morbidity and mortality globally. Among the leading causative agents of sepsis are bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, along with fungal pathogens of the Candida species. Here, we focus on evidence from human studies but also include in vitro and in vivo cellular and molecular evidence, exploring how bacterial and fungal pathogens are associated with bloodstream infection and sepsis. This review presents a narrative update on pathogen epidemiology, virulence factors, host factors of susceptibility, mechanisms of immunomodulation, current therapies, antibiotic resistance, and opportunities for diagnosis, prognosis, and therapeutics, through the perspective of bloodstream infection and sepsis. A list of curated novel host and pathogen factors, diagnostic and prognostic markers, and potential therapeutical targets to tackle sepsis from the research laboratory is presented. Further, we discuss the complex nature of sepsis depending on the sepsis-inducing pathogen and host susceptibility, the more common strains associated with severe pathology and how these aspects may impact in the management of the clinical presentation of sepsis.

19.
Vaccines (Basel) ; 11(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37515009

ABSTRACT

Cancer patients on chemotherapy have a lower immune response to SARS-CoV-2 vaccines. Therefore, through a prospective cohort study of patients with solid tumors receiving chemotherapy, we aimed to determine the immunogenicity of an mRNA vaccine booster (BNT162b2) among patients previously immunized with an inactivated (CoronaVac) or homologous (BNT162b2) SARS-CoV-2 vaccine. The primary outcome was the proportion of patients with anti-SARS-CoV-2 neutralizing antibody (NAb) seropositivity at 8-12 weeks post-booster. The secondary end points included IgG antibody (TAb) seropositivity and specific T-cell responses. A total of 109 patients were included. Eighty-four (77%) had heterologous vaccine schedules (two doses of CoronaVac followed by the BNT162b2 booster) and twenty-five had (23%) homologous vaccine schedules (three doses of BNT162b2). IgG antibody positivity for the homologous and heterologous regimen were 100% and 96% (p = 0.338), whereas NAb positivity reached 100% and 92% (p = 0.13), respectively. Absolute NAb positivity and Tab levels were associated with the homologous schedule (with a beta coefficient of 0.26 with p = 0.027 and a geometric mean ratio 1.41 with p = 0.044, respectively). Both the homologous and heterologous vaccine regimens elicited a strong humoral and cellular response after the BNT162b2 booster. The homologous regimen was associated with higher NAb positivity and Tab levels after adjusting for relevant covariates.

20.
Front Endocrinol (Lausanne) ; 14: 1192216, 2023.
Article in English | MEDLINE | ID: mdl-37455925

ABSTRACT

Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Dysbiosis , Thyroid Gland/metabolism , Fatty Acids, Volatile/metabolism , Intestines/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...