Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Clin Oncol ; 41(36): 5524-5535, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37722087

ABSTRACT

PURPOSE: The Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT) is a phase II platform trial that uses response adaptive randomization and genomic profiling to efficiently identify novel therapies for phase III testing. Three initial experimental arms (abemaciclib [a cyclin-dependent kinase [CDK]4/6 inhibitor], neratinib [an epidermal growth factor receptor [EGFR]/human epidermal growth factor receptor 2 inhibitor], and CC-115 [a deoxyribonucleic acid-dependent protein kinase/mammalian target of rapamycin inhibitor]) were simultaneously evaluated against a common control arm. We report the results for each arm and examine the feasibility and conduct of the adaptive platform design. PATIENTS AND METHODS: Patients with newly diagnosed O6-methylguanine-DNA methyltransferase-unmethylated glioblastoma were eligible if they had tumor genotyping to identify prespecified biomarker subpopulations of dominant glioblastoma signaling pathways (EGFR, phosphatidylinositol 3-kinase, and CDK). Initial random assignment was 1:1:1:1 between control (radiation therapy and temozolomide) and the experimental arms. Subsequent Bayesian adaptive randomization was incorporated on the basis of biomarker-specific progression-free survival (PFS) data. The primary end point was overall survival (OS), and one-sided P values are reported. The trial is registered with ClinicalTrials.gov (identifier: NCT02977780). RESULTS: Two hundred thirty-seven patients were treated (71 control; 73 abemaciclib; 81 neratinib; 12 CC-115) in years 2017-2021. Abemaciclib and neratinib were well tolerated, but CC-115 was associated with ≥ grade 3 treatment-related toxicity in 58% of patients. PFS was significantly longer with abemaciclib (hazard ratio [HR], 0.72; 95% CI, 0.49 to 1.06; one-sided P = .046) and neratinib (HR, 0.72; 95% CI, 0.50 to 1.02; one-sided P = .033) relative to the control arm but there was no PFS benefit with CC-115 (one-sided P = .523). None of the experimental therapies demonstrated a significant OS benefit (P > .05). CONCLUSION: The INSIGhT design enabled efficient simultaneous testing of three experimental agents using a shared control arm and adaptive randomization. Two investigational arms had superior PFS compared with the control arm, but none demonstrated an OS benefit. The INSIGhT design may promote improved and more efficient therapeutic discovery in glioblastoma. New arms have been added to the trial.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Random Allocation , Bayes Theorem , Brain Neoplasms/therapy , ErbB Receptors/genetics , Biomarkers
2.
Neurology ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948444

ABSTRACT

OBJECTIVES: To report on the tolerability and efficacy of olaparib with temozolomide (TMZ) for glioma METHODS: Single-center retrospective series of glioma patients treated with olaparib/TMZ September 2018-December 2021 RESULTS: Twenty patients (median age: 42, median Karnofsky Performance Status: 90) received olaparib/TMZ for diagnoses of IDH-mutant oligodendroglioma (n=5), IDH-mutant astrocytoma grade 2-3 (n=4), IDH-mutant astrocytoma grade 4 (n=7), or IDH-wildtype glioma (n=4). One patient was treated upfront and 19 at recurrence (median=3). Olaparib 150mg was administered three times/week concurrent with TMZ 50-75mg/m2 daily. Fatigue, gastrointestinal symptoms, and hematologic toxicity were common. 6/20 patients required dose reduction (n=4) or discontinuation (n=2) due to toxicity. Radiographic response was evaluable in 16 and observed (complete + partial) in 4/8 with IDH-mutant grade 2-3 glioma. No responses were seen in patients with grade 4 IDH-mutant astrocytomas (0/5) or IDH-wildtype gliomas (0/3). Progression-free survival was 7.8, 1.3, and 2.0 months, respectively. DISCUSSION: Olaparib/TMZ resulted in objective radiographic response in 50% of evaluable patients with recurrent IDH-mutant grade 2-3 gliomas with encouraging PFS and manageable toxicity. This supports a prospective trial of olaparib/TMZ for this population. CLASSIFICATION OF EVIDENCE: This case series provides Class IV evidence that treatment with olaparib/TMZ may result in radiographic response in patients with glioma.

3.
Neuro Oncol ; 24(12): 2015-2034, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35908833

ABSTRACT

In the new WHO 2021 Classification of CNS Tumors the chapter "Circumscribed astrocytic gliomas, glioneuronal and neuronal tumors" encompasses several different rare tumor entities, which occur more frequently in children, adolescents, and young adults. The Task Force has reviewed the evidence of diagnostic and therapeutic interventions, which is low particularly for adult patients, and draw recommendations accordingly. Tumor diagnosis, based on WHO 2021, is primarily performed using conventional histological techniques; however, a molecular workup is important for differential diagnosis, in particular, DNA methylation profiling for the definitive classification of histologically unresolved cases. Molecular factors are increasing of prognostic and predictive importance. MRI finding are non-specific, but for some tumors are characteristic and suggestive. Gross total resection, when feasible, is the most important treatment in terms of prolonging survival and achieving long-term seizure control. Conformal radiotherapy should be considered in grade 3 and incompletely resected grade 2 tumors. In recurrent tumors reoperation and radiotherapy, including stereotactic radiotherapy, can be useful. Targeted therapies may be used in selected patients: BRAF and MEK inhibitors in pilocytic astrocytomas, pleomorphic xanthoastrocytomas, and gangliogliomas when BRAF altered, and mTOR inhibitor everolimus in subependymal giant cells astrocytomas. Sequencing to identify molecular targets is advocated for diagnostic clarification and to direct potential targeted therapies.


Subject(s)
Astrocytoma , Brain Neoplasms , Ganglioglioma , Glioma , Child , Adolescent , Young Adult , Humans , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Proto-Oncogene Proteins B-raf/genetics , Astrocytoma/diagnosis , Astrocytoma/genetics , Astrocytoma/therapy , Ganglioglioma/diagnosis , Ganglioglioma/genetics , Ganglioglioma/therapy
4.
Hematol Oncol Clin North Am ; 36(1): 133-146, 2022 02.
Article in English | MEDLINE | ID: mdl-34801160

ABSTRACT

Meningiomas are largely indolent tumors with a benign clinical course, but a minority exhibit aggressive behavior characterized by rapid growth, neurologic deficits, and increased mortality. Identifying high-risk patients requiring intervention is challenging, but recent insights into meningioma biology provide a useful guide for decision making. Standard of care for recurrent or biologically aggressive tumors consists of surgery and radiation therapy. Systemic therapies targeting vascular endothelial growth factor signaling and somatostatin analogues are potential options for those with refractory disease but display only modest activity. New paradigms in meningioma clinical trial design provide hope for improved options in the future.


Subject(s)
Meningeal Neoplasms , Meningioma , Biology , Humans , Meningeal Neoplasms/therapy , Meningioma/therapy , Neoplasm Recurrence, Local , Vascular Endothelial Growth Factor A
5.
J Natl Compr Canc Netw ; 18(11): 1571-1578, 2020 11.
Article in English | MEDLINE | ID: mdl-33152700

ABSTRACT

Primary central nervous system lymphomas (PCNSLs) are rare cancers of the central nervous system (CNS) and are predominantly diffuse large B-cell lymphomas of the activated B-cell (ABC) subtype. They typically present in the sixth and seventh decade of life, with the highest incidence among patients aged >75 years. Although many different regimens have demonstrated efficacy in newly diagnosed and relapsed or refractory PCNSL, there have been few randomized prospective trials, and most recommendations and treatment decisions are based on single-arm phase II trials or even retrospective studies. High-dose methotrexate (HD-MTX; 3-8 g/m2) is the backbone of preferred standard induction regimens. Various effective regimens with different toxicity profiles can be considered that combine other chemotherapies and/or rituximab with HD-MTX, but there is currently no consensus for a single preferred regimen. There is controversy about the role of various consolidation therapies for patients who respond to HD-MTX-based induction therapy. For patients with relapsed or refractory PCNSL who previously experienced response to HD-MTX, repeat treatment with HD-MTX-based therapy can be considered depending on the timing of recurrence. Other more novel and less toxic regimens have been developed that show efficacy in recurrent disease, including ibrutinib, or lenalidomide ± rituximab. There is uniform agreement to delay or avoid whole-brain radiation therapy due to concerns for significant neurotoxicity if a reasonable systemic treatment option exists. This article aims to provide a clinically practical approach to PCNSL, including special considerations for older patients and those with impaired renal function. The benefits and risks of HD-MTX or high-dose chemotherapy with autologous stem cell transplantation versus other, better tolerated strategies are also discussed. In all settings, the preferred treatment is always enrollment in a clinical trial if one is available.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Hematopoietic Stem Cell Transplantation , Lymphoma, Non-Hodgkin , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Central Nervous System , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/therapy , Cranial Irradiation , Humans , Lymphoma, Non-Hodgkin/drug therapy , Methotrexate/therapeutic use , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/therapy , Prospective Studies , Retrospective Studies , Transplantation, Autologous
6.
Ann Clin Transl Neurol ; 7(4): 429-436, 2020 04.
Article in English | MEDLINE | ID: mdl-32293798

ABSTRACT

PURPOSE: Malignant glioma (MG) is the most deadly primary brain cancer. Signaling though the PI3K/AKT/mTOR axis is activated in most MGs and therefore a potential therapeutic target. The mTOR inhibitor temsirolimus and the AKT inhibitor perifosine are each well-tolerated as single agents but with limited activity reclinical data demonstrate synergistic anti-tumor effects from combined treatment. Therefore, we initiated a phase I trial of combined therapy in recurrent MGs to determine safety and a recommended phase II dose. METHODS: Adults with recurrent MG, Karnofsky Performance Status ≥ 60 were enrolled, with no limit on the number of prior therapies. Temsirolimus dose was escalated using standard 3 + 3 design from 15 mg to 170 mg administered once weekly. Perifosine was fixed as a 600 mg load on day 1 followed by 100 mg nightly (single agent MTD) until dose level 7 when the load increased to 900 mg. RESULTS: We treated 35 patients with with glioblastoma (17) or other MGs (18; including nine anaplastic astrocytoma, nine anaplastic oligodendroglioma, one anaplastic oligoastrocytoma, and two low grade astrocytomas with radiographic transformation to MG). We observed five dose-limiting toxicities (DLTs): one at dose level 3 (50mg temsirolimus), then two at dose level 7 expansion (170 mg temsirolimus), and then two more at dose level 6 expansion (170 mg temsirolimus). DLTs included thrombocytopenia (n = 3), intracerebral hemorrhage (n = 1) and lung infection (n = 1). CONCLUSION: Combining the mTOR inhibitor temsirolimus dosed at 115 mg weekly and the AKT inhibitor perifosine dosed at 100 mg daily (following 600 mg load) is tolerable in heavily pretreated adults with recurrent MGs.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Phosphorylcholine/analogs & derivatives , Sirolimus/analogs & derivatives , Adult , Aged , Antineoplastic Agents/adverse effects , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Phosphorylcholine/administration & dosage , Phosphorylcholine/adverse effects , Prospective Studies , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Sirolimus/administration & dosage , Sirolimus/adverse effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Young Adult
7.
J Neurooncol ; 144(2): 403-407, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31325145

ABSTRACT

PURPOSE: Perifosine (PRF) is an oral alkylphospholipid with antineoplastic effects and reasonable tolerability. It inhibits signaling through the PI3/AKT axis and other cascades of biologic importance in glioblastoma, and has promising pre-clinical activity in vitro and in vivo. Therefore, we conducted a phase II open-label single-arm clinical trial of perifosine for patients with recurrent glioblastoma (GBM). METHODS: We planned to accrue up to 30 adults with recurrent GBM with a minimum Karnofsky Performance Status of 50 following radiotherapy but without other restrictions on the number or types of prior therapy. Concurrent p450 stimulating hepatic enzyme inducing anticonvulsants were prohibited. Patients were treated with a loading dose of 600 mg PRF (in 4 divided doses on day 1) followed by 100 mg daily until either disease progression or intolerable toxicity. The primary endpoint was the 6-month progression free survival (PFS6) rate, with at least 20% considered promising. Accrual was continuous but if 0 of the first 12 patients with GBM reached PFS6, then further accrual would terminate for futility. Patients with other high grade gliomas were accrued concurrently to an exploratory cohort. RESULTS: Treatment was generally well tolerated; gastrointestinal toxicities were the most common side effects, although none resulted in treatment discontinuation. However, there was limited to no efficacy in GBM (n = 16): the PFS6 rate was 0%, median PFS was 1.58 months [95% CI (1.08, 1.84)], median overall survival was 3.68 months [95% CI (2.50, 7.79)], with no radiographic responses. There was a confirmed partial response in one patient with anaplastic astrocytoma (n = 14). CONCLUSIONS: PRF is tolerable but ineffective as monotherapy for GBM. Preclinical data suggests synergistic effects of PRF in combination with other approaches, and further study is ongoing.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Phosphorylcholine/analogs & derivatives , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Adult , Aged , Brain Neoplasms/pathology , Female , Follow-Up Studies , Glioblastoma/pathology , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Phosphorylcholine/therapeutic use , Prognosis , Prospective Studies , Survival Rate , Young Adult
8.
Clin Cancer Res ; 25(18): 5537-5547, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31263031

ABSTRACT

PURPOSE: The genomic landscape of gliomas has been characterized and now contributes to disease classification, yet the relationship between molecular profile and disease progression and treatment response remain poorly understood.Experimental Design: We integrated prospective clinical sequencing of 1,004 primary and recurrent tumors from 923 glioma patients with clinical and treatment phenotypes. RESULTS: Thirteen percent of glioma patients harbored a pathogenic germline variant, including a subset associated with heritable genetic syndromes and variants mediating DNA repair dysfunctions (29% of the total) that were associated with somatic biallelic inactivation and mechanism-specific somatic phenotypes. In astrocytomas, genomic alterations in effectors of cell-cycle progression correlated with aggressive disease independent of IDH mutation status, arose preferentially in enhancing tumors (44% vs. 8%, P < 0.001), were associated with rapid disease progression following tumor recurrence (HR = 2.6, P = 0.02), and likely preceded the acquisition of alkylating therapy-associated somatic hypermutation. Thirty-two percent of patients harbored a potentially therapeutically actionable lesion, of whom 11% received targeted therapies. In BRAF-mutant gliomas, response to agents targeting the RAF/MEK/ERK signaling axis was influenced by the type of mutation, its clonality, and its cellular and genomic context. CONCLUSIONS: These data reveal genomic correlates of disease progression and treatment response in diverse types of glioma and highlight the potential utility of incorporating genomic information into the clinical decision-making for patients with glioma.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Genetic Variation , Genomics , Glioma/genetics , Glioma/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Child , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Disease Progression , Female , Genomics/methods , Germ-Line Mutation , Glioma/diagnostic imaging , Glioma/therapy , High-Throughput Nucleotide Sequencing , Humans , Image Enhancement , Kaplan-Meier Estimate , Magnetic Resonance Imaging , Male , Middle Aged , Models, Biological , Mutation , Precision Medicine/methods , Prognosis , Promoter Regions, Genetic , Treatment Outcome , Tumor Suppressor Proteins/genetics , Young Adult
9.
Nat Med ; 25(3): 477-486, 2019 03.
Article in English | MEDLINE | ID: mdl-30742122

ABSTRACT

Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. The Ivy Foundation Early Phase Clinical Trials Consortium conducted a randomized, multi-institution clinical trial to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone. Neoadjuvant PD-1 blockade was associated with upregulation of T cell- and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhances both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment/immunology , Adult , Aged , Brain Neoplasms/immunology , Chemotherapy, Adjuvant , Female , Glioblastoma/immunology , Humans , Male , Middle Aged , Neoadjuvant Therapy , Neoplasm Recurrence, Local/immunology , Neurosurgical Procedures , Programmed Cell Death 1 Receptor/immunology , Survival Rate , T-Lymphocytes/immunology
10.
Nat Genet ; 51(2): 202-206, 2019 02.
Article in English | MEDLINE | ID: mdl-30643254

ABSTRACT

Immune checkpoint inhibitor (ICI) treatments benefit some patients with metastatic cancers, but predictive biomarkers are needed. Findings in selected cancer types suggest that tumor mutational burden (TMB) may predict clinical response to ICI. To examine this association more broadly, we analyzed the clinical and genomic data of 1,662 advanced cancer patients treated with ICI, and 5,371 non-ICI-treated patients, whose tumors underwent targeted next-generation sequencing (MSK-IMPACT). Among all patients, higher somatic TMB (highest 20% in each histology) was associated with better overall survival. For most cancer histologies, an association between higher TMB and improved survival was observed. The TMB cutpoints associated with improved survival varied markedly between cancer types. These data indicate that TMB is associated with improved survival in patients receiving ICI across a wide variety of cancer types, but that there may not be one universal definition of high TMB.


Subject(s)
Mutation/genetics , Neoplasms/genetics , Neoplasms/therapy , Antineoplastic Agents/immunology , High-Throughput Nucleotide Sequencing/methods , Humans , Immunotherapy/methods , Neoplasms/immunology , Tumor Burden/genetics , Tumor Burden/immunology
11.
Blood ; 133(5): 436-445, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30567753

ABSTRACT

Ibrutinib is a first-in-class inhibitor of Bruton tyrosine kinase (BTK) and has shown single-agent activity in recurrent/refractory central nervous system (CNS) lymphoma. Clinical responses are often transient or incomplete, suggesting a need for a combination therapy approach. We conducted a phase 1b clinical trial to explore the sequential combination of ibrutinib (560 or 840 mg daily dosing) with high-dose methotrexate (HD-MTX) and rituximab in patients with CNS lymphoma (CNSL). HD-MTX was given at 3.5 g/m2 every 2 weeks for a total of 8 doses (4 cycles; 1 cycle = 28 days). Ibrutinib was held on days of HD-MTX infusion and resumed 5 days after HD-MTX infusion or after HD-MTX clearance. Single-agent daily ibrutinib was administered continuously after completion of induction therapy until disease progression, intolerable toxicity, or death. We also explored next-generation sequencing of circulating tumor DNA (ctDNA) in cerebrospinal fluid (CSF) before and during treatment. The combination of ibrutinib, HD-MTX, and rituximab was tolerated with an acceptable safety profile (no grade 5 events, 3 grade 4 events). No dose-limiting toxicity was observed. Eleven of 15 patients proceeded to maintenance ibrutinib after completing 4 cycles of the ibrutinib/HD-MTX/rituximab combination. Clinical responses occurred in 12 of 15 patients (80%). Sustained tumor responses were associated with clearance of ctDNA from the CSF. This trial was registered at www.clinicaltrials.gov as #NCT02315326.


Subject(s)
Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Lymphoma/drug therapy , Methotrexate/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Rituximab/therapeutic use , Adenine/analogs & derivatives , Adult , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Circulating Tumor DNA/genetics , Female , Humans , Lymphoma/genetics , Lymphoma/pathology , Methotrexate/adverse effects , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Piperidines , Protein Kinase Inhibitors/adverse effects , Pyrazoles/adverse effects , Pyrazoles/pharmacokinetics , Pyrimidines/adverse effects , Pyrimidines/pharmacokinetics , Rituximab/adverse effects , Treatment Outcome , Young Adult
12.
J Clin Oncol ; 36(17): 1702-1709, 2018 06 10.
Article in English | MEDLINE | ID: mdl-29683790

ABSTRACT

Purpose Carboxyamidotriazole orotate (CTO) is a novel oral inhibitor of non-voltage-dependent calcium channels with modulatory effects in multiple cell-signaling pathways and synergistic effects with temozolomide (TMZ) in glioblastoma (GBM) models. We conducted a phase IB study combining CTO with two standard TMZ schedules in GBM. Methods In cohort 1, patients with recurrent anaplastic gliomas or GBM received escalating doses of CTO (219 to 812.5 mg/m2 once daily or 600 mg fixed once-daily dose) combined with TMZ (150 mg/m2 5 days during each 28-day cycle). In cohort 2, patients with newly diagnosed GBM received escalating doses of CTO (219 to 481 mg/m2/d once daily) with radiotherapy and TMZ 75 mg/m2/d, followed by TMZ 150 mg to 200 mg/m2 5 days during each 28-day cycle. Results Forty-seven patients were enrolled. Treatment was well tolerated; toxicities included fatigue, constipation, nausea, and hypophosphatemia. Pharmacokinetics showed that CTO did not alter TMZ levels; therapeutic concentrations were achieved in tumor and brain. No dose-limiting toxicities were observed; the recommended phase II dose was 600 mg/d flat dose. Signals of activity in cohort 1 (n = 27) included partial (n = 6) and complete (n = 1) response, including in O6-methylguanine-DNA methyltransferase unmethylated and bevacizumab-refractory tumors. In cohort 2 (n = 15), median progression-free survival was 15 months and median overall survival was not reached (median follow-up, 28 months; 2-year overall survival, 62%). Gene sequencing disclosed a high rate of responses among EGFR-amplified tumors ( P = .005), with mechanisms of acquired resistance possibly involving mutations in mismatch-repair genes and/or downstream components TSC2, NF1, NF2, PTEN, and PIK3CA. Conclusion CTO can be combined safely with TMZ or chemoradiation in GBM and anaplastic gliomas, displaying favorable brain penetration and promising signals of activity in this difficult-to-treat population.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Glioma/drug therapy , Triazoles/administration & dosage , Adult , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Calcium Channel Blockers/administration & dosage , Calcium Channel Blockers/adverse effects , Chemoradiotherapy , Cohort Studies , Dose-Response Relationship, Drug , Female , Glioblastoma/pathology , Glioblastoma/radiotherapy , Glioma/pathology , Glioma/radiotherapy , Humans , Male , Middle Aged , Triazoles/adverse effects , Young Adult
13.
CNS Oncol ; 7(1): 7-13, 2018 01.
Article in English | MEDLINE | ID: mdl-29388793

ABSTRACT

Interpretation of MRI abnormalities in patients with malignant gliomas (MG) treated with bevacizumab is challenging. Recent reports describe quantitative analyses of diffusion-weighted imaging abnormalities not available in standard clinical settings, to differentiate tumor recurrence from treatment necrosis. We retrospectively reviewed bevacizumab treated MG patients who underwent surgery or autopsy to correlate radiographic recurrence patterns with pathologic findings. 32 patients with MG (26 glioblastoma, three anaplastic astrocytoma and three anaplastic oligodendroglioma) were identified. Recurrence patterns: local enhancing (n = 23), distant enhancing (n = 1), nonenhancing (n = 7) and leptomeningeal (n = 1). HISTOLOGY: tumor (n = 25), mixed tumor/necrosis (n = 5) and all necrosis (n = 2). On diffusion-weighted imaging, 5/32 had restricted diffusion (three mixed and two necrosis). Irrespective of radiographic recurrence pattern, tumor was found in 94% of cases. Restricted diffusion correlated with necrosis.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , Brain/drug effects , Glioma/drug therapy , Neoplasm Recurrence, Local/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging , Female , Glioma/diagnostic imaging , Glioma/pathology , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Retrospective Studies , Young Adult
14.
Cancer Discov ; 7(9): 1018-1029, 2017 09.
Article in English | MEDLINE | ID: mdl-28619981

ABSTRACT

Bruton tyrosine kinase (BTK) links the B-cell antigen receptor (BCR) and Toll-like receptors with NF-κB. The role of BTK in primary central nervous system (CNS) lymphoma (PCNSL) is unknown. We performed a phase I clinical trial with ibrutinib, the first-in-class BTK inhibitor, for patients with relapsed or refractory CNS lymphoma. Clinical responses to ibrutinib occurred in 10 of 13 (77%) patients with PCNSL, including five complete responses. The only PCNSL with complete ibrutinib resistance harbored a mutation within the coiled-coil domain of CARD11, a known ibrutinib resistance mechanism. Incomplete tumor responses were associated with mutations in the B-cell antigen receptor-associated protein CD79B. CD79B-mutant PCNSLs showed enrichment of mammalian target of rapamycin (mTOR)-related gene sets and increased staining with PI3K/mTOR activation markers. Inhibition of the PI3K isoforms p110α/p110δ or mTOR synergized with ibrutinib to induce cell death in CD79B-mutant PCNSL cells.Significance: Ibrutinib has substantial activity in patients with relapsed or refractory B-cell lymphoma of the CNS. Response rates in PCNSL were considerably higher than reported for diffuse large B-cell lymphoma outside the CNS, suggesting a divergent molecular pathogenesis. Combined inhibition of BTK and PI3K/mTOR may augment the ibrutinib response in CD79B-mutant human PCNSLs. Cancer Discov; 7(9); 1018-29. ©2017 AACR.See related commentary by Lakshmanan and Byrd, p. 940This article is highlighted in the In This Issue feature, p. 920.


Subject(s)
Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Lymphoma, B-Cell/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Adenine/analogs & derivatives , Adult , Agammaglobulinaemia Tyrosine Kinase , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , CARD Signaling Adaptor Proteins/genetics , Central Nervous System Neoplasms/blood , Central Nervous System Neoplasms/cerebrospinal fluid , Central Nervous System Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Female , Guanylate Cyclase/genetics , Humans , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/cerebrospinal fluid , Lymphoma, B-Cell/metabolism , Male , Maximum Tolerated Dose , Middle Aged , Mutation , Piperidines , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/adverse effects , Pyrazoles/pharmacokinetics , Pyrimidines/adverse effects , Pyrimidines/pharmacokinetics , Treatment Outcome , Young Adult
15.
Neurooncol Pract ; 4(1): 24-28, 2017 Mar.
Article in English | MEDLINE | ID: mdl-31044081

ABSTRACT

BACKGROUND: Intraparenchymal hemorrhage (IPH) is a relative contraindication to bevacizumab therapy, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody approved for the treatment of recurrent glioblastoma. However, in patients with symptomatic enhancing tumors and poor functional status, bevacizumab may be the only beneficial therapeutic option. METHODS: We retrospectively reviewed all patients with high-grade glioma who were treated between January 1, 2005 and December 31, 2014 with bevacizumab despite prior IPH. RESULTS: Eighteen patients met our study criteria. There were 12 women and 6 men with a median age of 56 years. Tumor types were glioblastoma (n = 15), anaplastic astrocytoma (n = 2), and anaplastic oligodendroglioma (n = 1). Seventeen patients had prior spontaneous intratumoral bleed (13 grade 1-2; 4 grade 3-4); the 1 remaining patient had a grade 3 bleed due to cerebral venous thrombosis. Among them, identifiable risk factors for hemorrhage were anti-VEGF therapy, anticoagulation use, thrombocytopenia, and hypertension; seven had no identifiable risk factors. The median duration from IPH to (re-)initiation of bevacizumab was 113 days (range 13-1367). Brain imaging performed prior to bevacizumab treatment showed persistent or evolving hemorrhage in 8 patients and complete resolution in 10 patients. With a median follow-up duration of 137 days after bevacizumab re-initiation, only 1 (6%) of the 18 patients re-bled; this patient had an anaplastic oligodendroglioma and developed a grade 2 intratumoral bleed after 3 doses of bevacizumab. CONCLUSIONS: The incidence of re-bleed is rare. Bevacizumab use was safe in patients with recurrent high-grade glioma following IPH for whom no other meaningful treatment options existed.

16.
J Neurooncol ; 130(3): 571-579, 2016 12.
Article in English | MEDLINE | ID: mdl-27826680

ABSTRACT

Antiangiogenic therapies for malignant gliomas often result in transient response, and recurrent disease is characterized by adoption of invasive and hypoxic phenotype. The notch signaling pathway is activated in gliomas, and augments cell migration and hypoxic response. Here we report a clinical study of the combination of bevacizumab and RO4929097, an inhibitor of the notch signaling cascade. A phase I clinical trial was conducted through the Adult Brain Tumor Consortium in subjects with recurrent malignant glioma. Primary objectives were to assess safety and to define the maximum tolerated dose of RO4929097 in combination with bevacizumab. Secondary objectives were to determine overall survival, progression free survival, radiographic response, pharmacokinetic evaluation, and tissue biomarker analysis. Thirteen subjects were enrolled. Of the three subjects treated with the highest dose of RO4929097, one grade 3 toxicity and one grade 2 toxicity were observed. Definitive maximum tolerated dose of RO4929097 in combination with bevacizumab was not identified due to manufacturer's decision to halt drug production. 2 of 12 evaluable subjects demonstrated radiographic response; one subject experienced CR and the second PR. The median overall survival was 10.9 months with a median progression-free survival of 3.7 months. Two subjects remained free of disease progression at 6 months from treatment initiation. PK evaluation did not identify clinically significant drug-drug interactions. All analyzed tissue specimens revealed activation of notch signaling. Combination of RO4929097 and bevacizumab was well-tolerated. Given the compelling scientific rationale, additional studies of antiangiogenic and notch signaling inhibitors should be considered.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzazepines/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , Glioma/drug therapy , Adult , Brain Neoplasms/mortality , Female , Glioma/mortality , Humans , Male , Middle Aged , Time Factors
17.
Neuro Oncol ; 18(2): 283-90, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26691210

ABSTRACT

BACKGROUND: The majority of WHO grades II and III gliomas harbor a missense mutation in the metabolic gene isocitrate dehydrogenase (IDH) and accumulate the metabolite R-2-hydroxyglutarate (R-2HG). Prior studies showed that this metabolite can be detected in vivo using proton magnetic-resonance spectroscopy (MRS), but the sensitivity of this methodology and its clinical implications are unknown. METHODS: We developed an MR imaging protocol to integrate 2HG-MRS into routine clinical glioma imaging and examined its performance in 89 consecutive glioma patients. RESULTS: Detection of 2-hydroxyglutarate (2HG) in IDH-mutant gliomas was closely linked to tumor volume, with sensitivity ranging from 8% for small tumors (<3.4 mL) to 91% for larger tumors (>8 mL). In patients undergoing 2HG-MRS prior to surgery, tumor levels of 2HG corresponded with tumor cellularity but not with tumor grade or mitotic index. Cytoreductive therapy resulted in a gradual decrease in 2HG levels with kinetics that closely mirrored changes in tumor volume. CONCLUSIONS: Our study demonstrates that 2HG-MRS can be linked with routine MR imaging to provide quantitative measurements of 2HG in glioma and may be useful as an imaging biomarker to monitor the abundance of IDH-mutant tumor cells noninvasively during glioma therapy and disease monitoring.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Glutarates/metabolism , Isocitrate Dehydrogenase/metabolism , Practice Guidelines as Topic , Proton Magnetic Resonance Spectroscopy/methods , Adult , Aged , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Female , Follow-Up Studies , Glioma/metabolism , Glioma/therapy , Humans , Male , Middle Aged , Neoplasm Grading , Prognosis , Young Adult
18.
Neuro Oncol ; 17(10): 1386-92, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26008604

ABSTRACT

BACKGROUND: Despite being a highly vascularized tumor, glioblastoma response to anti-vascular endothelial growth factor (VEGF) therapy is transient, possibly because of tumor co-option of preexisting blood vessels and infiltration into surrounding brain. Integrins, which are upregulated after VEGF inhibition, may play a critical role in this resistance mechanism. We designed a study of cediranib, a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor, combined with cilengitide, an integrin inhibitor. METHODS: This phase I study was conducted through the Adult Brain Tumor Consortium in patients with recurrent glioblastoma. Once the maximum tolerated dose was determined, 40 patients enrolled in a dose expansion cohort with 20 being exposed to anti-VEGF therapy and 20 being naive. The primary endpoint was safety. Secondary endpoints included overall survival, proportion of participants alive and progression free at 6 months, radiographic response, and exploratory analyses of physiological imaging and blood biomarkers. RESULTS: Forty-five patients enrolled, and no dose toxicities were observed at a dose of cediranib 30 mg daily and cilengitide 2000 mg twice weekly. Complete response was seen in 2 participants, partial response in 2, stable disease in 13, and progression in 21; 7 participants were not evaluable. Median overall survival was 6.5 months, median progression-free survival was 1.9 months, and progression-free survival at 6 months was 4.4%. Plasma-soluble VEGFR2 decreased with treatment and placental growth factor, carbonic anhydrase IX, and SDF1α, and cerebral blood flow increased. CONCLUSIONS: The combination of cediranib with cilengitide was well tolerated and associated with changes in pharmacodynamic blood and imaging biomarkers. However, the survival and response rates do not warrant further development of this combination.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Quinazolines/therapeutic use , Snake Venoms/therapeutic use , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols , Biomarkers, Tumor/blood , Brain Neoplasms/pathology , Disease-Free Survival , Dose-Response Relationship, Drug , Female , Glioblastoma/pathology , Humans , Male , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Quinazolines/administration & dosage , Quinazolines/adverse effects , Snake Venoms/administration & dosage , Snake Venoms/adverse effects , Treatment Outcome , Young Adult
19.
Clin Cancer Res ; 21(16): 3610-8, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25910950

ABSTRACT

PURPOSE: Vandetanib, a tyrosine kinase inhibitor of KDR (VEGFR2), EGFR, and RET, may enhance sensitivity to chemotherapy and radiation. We conducted a randomized, noncomparative, phase II study of radiation (RT) and temozolomide with or without vandetanib in patients with newly diagnosed glioblastoma (GBM). EXPERIMENTAL DESIGN: We planned to randomize a total of 114 newly diagnosed GBM patients in a ratio of 2:1 to standard RT and temozolomide with (76 patients) or without (38 patients) vandetanib 100 mg daily. Patients with age ≥ 18 years, Karnofsky performance status (KPS) ≥ 60, and not on enzyme-inducing antiepileptics were eligible. Primary endpoint was median overall survival (OS) from the date of randomization. Secondary endpoints included median progression-free survival (PFS), 12-month PFS, and safety. Correlative studies included pharmacokinetics as well as tissue and serum biomarker analysis. RESULTS: The study was terminated early for futility based on the results of an interim analysis. We enrolled 106 patients (36 in the RT/temozolomide arm and 70 in the vandetanib/RT/temozolomide arm). Median OS was 15.9 months [95% confidence interval (CI), 11.0-22.5 months] in the RT/temozolomide arm and 16.6 months (95% CI, 14.9-20.1 months) in the vandetanib/RT/temozolomide (log-rank P = 0.75). CONCLUSIONS: The addition of vandetanib at a dose of 100 mg daily to standard chemoradiation in patients with newly diagnosed GBM or gliosarcoma was associated with potential pharmacodynamic biomarker changes and was reasonably well tolerated. However, the regimen did not significantly prolong OS compared with the parallel control arm, leading to early termination of the study.


Subject(s)
Dacarbazine/analogs & derivatives , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Piperidines/administration & dosage , Quinazolines/administration & dosage , Adult , Aged , Aged, 80 and over , Combined Modality Therapy , Dacarbazine/administration & dosage , Dacarbazine/adverse effects , Disease-Free Survival , Female , Glioblastoma/blood , Glioblastoma/pathology , Humans , Kaplan-Meier Estimate , Karnofsky Performance Status , Male , Middle Aged , Piperidines/adverse effects , Quinazolines/adverse effects , Temozolomide , Treatment Outcome
20.
Continuum (Minneap Minn) ; 21(2 Neuro-oncology): 397-414, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25837903

ABSTRACT

PURPOSE OF REVIEW: This article reviews the clinical features, diagnostic criteria, molecular genetics, and management of sporadic meningiomas and vestibular schwannomas and tumors associated with the major neurocutaneous disorders. RECENT FINDINGS: Recent advances in cancer genomics are now allowing sequencing of the genome of these tumors to identify oncogenic drivers and possible therapeutic targets. SUMMARY: Sporadic meningiomas and schwannomas, and tumors occurring as part of a neurocutaneous syndrome, have been the subjects of strong biological and therapeutic interest in the past few years; new and exciting therapies are either under investigation or will be in the upcoming years. This article takes an in-depth look at sporadic meningiomas and schwannomas, followed by a review of the phakomatoses and their associated tumors.


Subject(s)
Brain Neoplasms/therapy , Genome , Meningioma/therapy , Neurocutaneous Syndromes/therapy , Neuroma, Acoustic/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Genomics , Humans , Meningioma/genetics , Neurocutaneous Syndromes/diagnosis , Neurocutaneous Syndromes/genetics , Neurocutaneous Syndromes/physiopathology , Neuroma, Acoustic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...