Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 11(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069805

ABSTRACT

The main objective of this study was to verify the safety of mealworm meal in the feed of laying hens from 17 to 42 weeks of age. Therefore, the feed mixtures were tested in terms of microbiological stability, fungal and mycotoxin content and selected parameters of hens' intestinal morphology and physiology were monitored. The experiment was carried out with 30 Lohmann Brown Classic hens. Hens were divided by body mass into three equal groups with 10 replicates per treatment. The two experimental groups received feed mixtures containing 2% and 5% yellow mealworm (Tenebrio molitor L.) meal. The third group was a control group which had 0% of mealworm meal in the diet. Diets with 2% and 5% of mealworm meals did not affect the length of villi and microbiome of the caecum. The highest digesta viscosity from the ileum was found in the group with 5% mealworm, which may indicate a slower passage of the digesta through the digestive tract. Based on our results, it may be concluded that the proportion of mealworm meals does not deteriorate the quality of feeds. Mealworm meal does not negatively affect microbial stability in experimental feeds. Therefore, it can be recommended the two and (or) five percent of mealworm meal inclusion in hen's diet.

2.
Article in English | MEDLINE | ID: mdl-28420109

ABSTRACT

In the production of fermented feed, each crop can be contaminated with a variety of microorganisms that may produce natural pollutants. Biogenic amines, mycotoxins, and undesirable organic acids can decrease health feed safety. The aim of this study was to compare the counts of microorganisms, levels of biogenic amines, and the mycotoxins in forage legumes, and also to compare the occurrence of microorganisms and levels of mycotoxins in green fodder and subsequently produced silage and the influence of additives on the content of natural harmful substances in silage. The experimental plot was located in Troubsko and Vatín, in the Czech Republic. Two varieties of Medicago sativa and one variety of Trifolium pratense were compared. Green fodder and subsequently produced silage reaching up to 23% of dry matter were evaluated and prepared using a bio-enzymatic additive and a chemical additive. Green fodder of Medicago sativa was more contaminated by Enterococci than Trifolium pratense fodder. The obvious difference was determined by the quality of silage leachate. The silage prepared from Medicago sativa fodder was more contaminated with butyric acid. Fungi were present in higher counts in the anaerobic environment of green fodder and contaminated it with zearalenone and deoxynivalenol. Lower counts of fungi were found in silage, although the zearalenone content did not change. Lower content of deoxynivalenol was detected in silage, compared with green fodder. Silages treated with a chemical additive were found not to contain butyric acid. Lower ethanol content was determined, and the tendency to reduce the risk of biogenic amines occurrence was evident. The additives proved to have no influence on the content of mycotoxins.


Subject(s)
Animal Feed/microbiology , Biogenic Amines/chemistry , Food Additives/pharmacology , Food Contamination/prevention & control , Medicago sativa/chemistry , Mycotoxins/chemistry , Trifolium/chemistry , Animals , Czech Republic , Fermentation , Medicago sativa/microbiology , Silage/analysis , Silage/microbiology , Trifolium/microbiology
3.
J Photochem Photobiol B ; 138: 230-9, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-24993083

ABSTRACT

We analyzed antibacterial effects of several novel phthalocyanines against Escherichia coli and evaluated the suitability of flow cytometry for the detection of antibacterial effects of phthalocyanines in comparison with routinely used cultivation. After 3h of exposure under cool white light eight cationic phthalocyanines showed very high antibacterial activity in the concentration of 2.00 mg L(-1) and four of them were even efficient in the concentration of 0.20 mg L(-1). Antibacterial activity of neutral and anionic compounds was considerably lower or even negligible. No antibacterial effect was detected when bacteria were exposed without illumination. Binding affinity to bacterial cells was found to represent an important parameter influencing phthalocyanine antibacterial activity that can be modified by total charge of peripheral substituents and by the presence of suitable functional groups inside them. Agglomeration of cells observed in suspensions treated with a higher concentration of certain cationic phthalocyanines (the strongest binders to bacterial membrane) affected cytometric measurements of total cell counts, thus without appropriate pretreatment of the sample before analysis this parameter seems not to be fully valid in the evaluation of phthalocyanine antibacterial activity. Cytometric measurement of cell membrane integrity appears to be a suitable and even more sensitive parameter than cultivation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Indoles/pharmacology , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/chemistry , Flow Cytometry , Indoles/chemistry , Isoindoles , Light , Photosensitizing Agents/chemistry , Singlet Oxygen/metabolism
4.
Water Sci Technol ; 69(7): 1496-501, 2014.
Article in English | MEDLINE | ID: mdl-24718342

ABSTRACT

The aim of this study was to investigate the suitability of a novel electrospun polyurethane nanofibre material for water-treatment purposes. Bacterial removal efficiency was tested in the laboratory by filtering artificial water spiked with Escherichia coli through a 0.25 µm nanofibre membrane. The results were compared with those obtained using a commercial microfiltration material (MV020T) with a similar pore size (0.20 µm). Alongside the laboratory experiments, we also determined filtration efficiency with semi-pilot scale experiments using actual wastewater from the secondary sedimentation tank of a wastewater treatment plant. The laboratory experiments indicated very high log10 removal efficiency, ranging from 5.8 to 6.8 CFU (colony-forming units)/ml. These results were better than those of the commercial membrane (3.8-4.6 CFU/ml). The semi-pilot scale experiment confirmed the membrane's suitability for microbial filtration, with both E. coli and total culturable microorganisms (cultured at both 22 and 36 °C) showing a significant decline compared to the non-filtered control (wastewater from the secondary outlet).


Subject(s)
Filtration/instrumentation , Membranes, Artificial , Nanofibers , Polyurethanes/chemical synthesis , Water Purification/instrumentation , Escherichia coli , Pilot Projects , Povidone
SELECTION OF CITATIONS
SEARCH DETAIL
...