Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e15928, 2023.
Article in English | MEDLINE | ID: mdl-37719114

ABSTRACT

Oilseeds with high productivity and tolerance to various environmental stresses are in high demand in the food and industrial sectors. Safflower, grown under residual moisture in the semi-arid tropics, is adapted to moisture stress at certain levels. However, a substantial reduction in soil moisture has a significant impact on its productivity. Therefore, assessing genetic variation for water use efficiency traits like transpiration efficiency (TE), water uptake, and canopy temperature depression (CTD) is essential for enhancing crop adaptation to drought. The response of safflower genotypes (n = 12) to progressive soil moisture depletion was studied in terms of water uptake, TE, and CTD under a series of pot and field experiments. The normalised transpiration rate (NTR) in relation to the fraction of transpirable soil water (FTSW) varied significantly among genotypes. The genotypes A-1, Bhima, GMU-2347, and CO-1 had higher NTR-FTSW threshold values of 0.79 (R2 = 0.92), 0.74 (R2 = 0.96), 0.71 (R2 = 0.96), and 0.71 (R2 = 0.91), respectively, whereas GMU-2644 had the lowest 0.38 (R2 = 0.93). TE was high in genotype GMU-2347, indicating that it could produce maximum biomass per unit of water transpired. At both the vegetative and reproductive stages, significant positive relationships between TE, SPAD chlorophyll metre reading (SCMR) (p < 0.01) and CTD (p < 0.01) were observed under field conditions by linear regression. The genotypes with high FTSW-NTR thresholds, high SCMR, and low CTD may be useful clues in identifying a genotype's ability to adapt to moisture stress. The findings showed that the safflower genotypes A-1, Bhima, GMU-2347, and CO-1 exhibited an early decline and regulated water uptake by conserving it for later growth stages under progressive soil water depletion.


Subject(s)
Carthamus tinctorius , Temperature , Cold Temperature , Biological Transport , Chlorophyll
2.
Front Plant Sci ; 13: 781524, 2022.
Article in English | MEDLINE | ID: mdl-35463391

ABSTRACT

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a C4 crop cultivated for its grain and stover in crop-livestock-based rain-fed farming systems of tropics and subtropics in the Indian subcontinent and sub-Saharan Africa. The intensity of drought is predicted to further exacerbate because of looming climate change, necessitating greater focus on pearl millet breeding for drought tolerance. The nature of drought in different target populations of pearl millet-growing environments (TPEs) is highly variable in its timing, intensity, and duration. Pearl millet response to drought in various growth stages has been studied comprehensively. Dissection of drought tolerance physiology and phenology has helped in understanding the yield formation process under drought conditions. The overall understanding of TPEs and differential sensitivity of various growth stages to water stress helped to identify target traits for manipulation through breeding for drought tolerance. Recent advancement in high-throughput phenotyping platforms has made it more realistic to screen large populations/germplasm for drought-adaptive traits. The role of adapted germplasm has been emphasized for drought breeding, as the measured performance under drought stress is largely an outcome of adaptation to stress environments. Hybridization of adapted landraces with selected elite genetic material has been stated to amalgamate adaptation and productivity. Substantial progress has been made in the development of genomic resources that have been used to explore genetic diversity, linkage mapping (QTLs), marker-trait association (MTA), and genomic selection (GS) in pearl millet. High-throughput genotyping (HTPG) platforms are now available at a low cost, offering enormous opportunities to apply markers assisted selection (MAS) in conventional breeding programs targeting drought tolerance. Next-generation sequencing (NGS) technology, micro-environmental modeling, and pearl millet whole genome re-sequence information covering circa 1,000 wild and cultivated accessions have helped to greater understand germplasm, genomes, candidate genes, and markers. Their application in molecular breeding would lead to the development of high-yielding and drought-tolerant pearl millet cultivars. This review examines how the strategic use of genetic resources, modern genomics, molecular biology, and shuttle breeding can further enhance the development and delivery of drought-tolerant cultivars.

3.
Physiol Plant ; 174(1): e13521, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34392545

ABSTRACT

Pearl millet (Pennisetum glaucum [L.] R. Br.) is an important crop capable of growing in harsh and marginal environments, with the highest degree of tolerance to drought and heat stresses among cereals. Diverse germplasm of pearl millet shows a significant phenotypic variation in response to abiotic stresses, making it a unique model to study the mechanisms responsible for stress mitigation. The present study focuses on identifying the physiological response of two pearl millet high-resolution cross (HRC) genotypes, ICMR 1122 and ICMR 1152, in response to low and high vapor pressure deficit (VPD). Under high VPD conditions, ICMR 1152 exhibited a lower transpiration rate (Tr), higher transpiration efficiency, and lower root sap exudation than ICMR 1122. Further, Pg-miRNAs expressed in the contrasting genotypes under low and high VPD conditions were identified by deep sequencing analysis. A total of 116 known and 61 novel Pg-miRNAs were identified from ICMR 1152, while 26 known and six novel Pg-miRNAs were identified from ICMR 1122 genotypes, respectively. While Pg-miR165, 168, 170, and 319 families exhibited significant differential expression under low and high VPD conditions in both genotypes, ICMR 1152 showed abundant expression of Pg-miR167, Pg-miR172, Pg-miR396 Pg-miR399, Pg-miR862, Pg-miR868, Pg-miR950, Pg-miR5054, and Pg-miR7527 indicating their direct and indirect role in root physiology and abiotic stress responses. Drought responsive Pg-miRNA targets showed upregulation in response to high VPD stress, further narrowing down the miRNAs involved in regulation of drought tolerance in pearl millet.


Subject(s)
MicroRNAs , Pennisetum , Droughts , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Pennisetum/genetics , Pennisetum/metabolism , Plants, Genetically Modified/genetics , Vapor Pressure
4.
Funct Plant Biol ; 43(5): 423-437, 2016 May.
Article in English | MEDLINE | ID: mdl-32480473

ABSTRACT

Traits influencing plant water use eventually define the fitness of genotypes for specific rainfall environments. We assessed the response of several water use traits to vapour pressure deficit (VPD) in pearl millet (Pennisetum glaucum (L.) R.Br.) genotypes known to differ in drought adaptation mechanisms: PRLT 2/89-33 (terminal drought-adapted parent), H 77/833-2 (terminal drought-sensitive parent) and four near-isogenic lines introgressed with a terminal drought tolerance quantitative trait locus (QTL) from PRLT 2/89-33 (ICMR01029, ICMR01031, ICMR02042, and ICMR02044). Plant water use traits at various levels of plant organisation were evaluated in seven experiments in plants exposed either transiently or over the long term to different VPD regimes: biomass components, transpiration (water usage per time unit) and transpiration rate (TR) upon transient VPD increase (gH2Ocm-2h-1)), transpiration efficiency (g dry biomass per kg H2O transpired), leaf expansion rate (cm per thermal time unit) and root anatomy (endodermis dimensions)). High VPD decreased biomass accumulation by reducing tillering, the leaf expansion rate and the duration of leaf expansion; decreased root endodermis cell size; and increased TR and the rate of TR increase upon gradual short-term VPD increases. Such changes may allow plants to increase their water transport capacity in a high VPD environment and are genotype-specific. Some variation in water use components was associated with terminal drought adaptation QTL. Knowledge of water use traits' plasticity in growth environments that varied in evaporative demand, and on their genetic determinacy, is necessary to develop trait-based breeding approaches to complex constraints.

5.
Funct Plant Biol ; 41(11): 1019-1034, 2014 Oct.
Article in English | MEDLINE | ID: mdl-32481055

ABSTRACT

Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a 'stay-green' phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...