Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(15): 2808-2815, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37126016

ABSTRACT

PURPOSE: Patients with platinum-resistant ovarian cancer respond poorly to existing therapies. Hence there is a need for more effective treatments. PATIENTS AND METHODS: The DeCidE1 trial is a multicenter, randomized, open-label, single-arm phase II study to evaluate the safety and effectiveness of maveropepimut-S with cyclophosphamide in patients with recurrent ovarian cancer. Median follow-up for evaluable subjects was 4.4 months. Data were collected from March 2019 to June 2021. Subjects received two injections of 0.25 mL maveropepimut-S 3 weeks apart, followed by one 0.1-mL doses, every 8 weeks up to progression. Oral cyclophosphamide, 50 mg twice daily, was administered in repeating weekly on and off cycles. RESULTS: Twenty-two patients were enrolled. Median age was 58 years (38-78 years). Among the evaluable population, the objective response rate (ORR) was 21% [90% confidence interval (CI), 7.5%-41.9%], with a disease control rate (DCR) of 63% (90% CI, 41.8%-81.3%), including 4 (21%) patients with partial responses, 8 (42%) stable disease, and 7 (37%) progressive disease. The ORRs were consistent across subgroups based on platinum sensitivity, and DCR was higher in the platinum-resistant subpopulation. Four SD patients maintained clinical benefit up to 25 months. Most treatment-related adverse events (TRAE) were grade 1 and 2 (87% of unique events). Most common AEs were injection site reactions. Eight subjects reported grade 3 and no grade 4 AEs. Survivin-specific T-cell responses were observed in treated patients with clinical benefit. CONCLUSIONS: Maveropepimut-S with intermittent low-dose cyclophosphamide is well-tolerated, with clinical benefit for patients with recurrent ovarian cancer. Observed responses are irrespective of the platinum status.


Subject(s)
Ovarian Neoplasms , Humans , Female , Middle Aged , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/etiology , Neoplasm Recurrence, Local/drug therapy , Carcinoma, Ovarian Epithelial/drug therapy , Cyclophosphamide/adverse effects , Treatment Outcome , Platinum/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
2.
Hum Vaccin Immunother ; 16(9): 2007-2017, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32530723

ABSTRACT

The small hydrophobic (SH) glycoprotein of human respiratory syncytial virus (RSV) is a transmembrane protein that is poorly accessible by antibodies on the virion but has an ectodomain (SHe) that is accessible and expressed on infected cells. The SHe from RSV strain A has been formulated in DPX, a unique delivery platform containing an adjuvant, and is being evaluated as an RSV vaccine candidate. The proposed mechanism of protection is the immune-mediated clearance of infected cells rather than neutralization of the virion. Our phase I clinical trial data clearly showed that vaccination resulted in robust antibody responses, but it was unclear if these immune responses have any correlation to immune responses to natural infection with RSV. Therefore, we embarked on this study to examine these immune responses in older adults with confirmed RSV infection. We compared vaccine-induced (DPX-RSV(A)) immune responses from participants in a Phase 1 clinical trial to paired acute and convalescent titers from older adults with symptomatic laboratory-confirmed RSV infection. Serum samples were tested for anti-SHe IgG titers and the isotypes determined. T cell responses were evaluated by IFN-γ ELISPOT. Anti-SHe titers were detected in 8 of 42 (19%) in the acute phase and 16 of 42 (38%) of convalescent serum samples. IgG1, IgG3, and IgA were the prevalent isotypes generated by both vaccination and infection. Antigen-specific T cell responses were detected in 9 of 16 (56%) of vaccinated participants. Depletion of CD4+ but not CD8+ T cells abrogated the IFN-γ ELISPOT response supporting the involvement of CD4+ T cells in the immune response to vaccination. The data showed that an immune response like that induced by DPX-RSV(A) could be seen in a subset of participants with confirmed RSV infection. These findings show that older adults with clinically significant infection as well as vaccinated adults generate a humoral response to SHe. The induction of both SHe-specific antibody and cellular responses support further clinical development of the DPX-RSV(A) vaccine.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Aged , Animals , Antibodies, Viral , Female , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/prevention & control , T-Lymphocytes
3.
Hum Vaccin Immunother ; 14(1): 59-66, 2018 01 02.
Article in English | MEDLINE | ID: mdl-28933663

ABSTRACT

Peptide antigens are combined with an adjuvant in order to increase immunogenicity in vivo. The immunogenicity and safety of a RSV vaccine formulated in a novel oil-based platform, DepoVax™ (DPX), was compared to an alum formulation. A peptide B cell epitope derived from RSV small hydrophobic ectodomain (SHe) served as the antigen. Both vaccines induced SHe-specific antibodies after immunization of mice. A single dose of the DPX-based formulation resulted in anti-SHe titres for up to 20 weeks. Boosting with Alum-SHe, but not with DPX-SHe, led to unexpected clinical signs such as decreased activity, cyanosis and drop in body temperature in mice but not in rabbits. The severity of adverse reactions correlated with magnitude of SHe-specific IgG immune responses and decreased complement component 3 plasma levels, indicating a type III hypersensitivity reaction. By RP-HPLC analysis, we found that only 8-20% of the antigen was found to be adsorbed to alum in vitro, indicating that this antigen is likely released systemically upon injection in vivo. Clinical signs were not observed in rabbits, indicating the response correlates with peptide dose relative to size of animal. These results suggest that peptide antigens targeted to produce B cell mediated response may result in increased incidence of type III hypersensitivity reactions when delivered in non-depot forming vaccines. The DPX formulation induced strong antibody titres to the antigen without causing adverse events, likely due to the strength of the depot in vivo, and demonstrates the potential safety and immunogenicity of this platform for B cell peptide antigens.


Subject(s)
Adjuvants, Immunologic/adverse effects , Epitopes, B-Lymphocyte/immunology , Immune Complex Diseases/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Viruses/immunology , Adjuvants, Immunologic/chemistry , Alum Compounds/adverse effects , Alum Compounds/chemistry , Animals , Delayed-Action Preparations/adverse effects , Delayed-Action Preparations/chemistry , Drug Evaluation, Preclinical , Female , Immune Complex Diseases/epidemiology , Immunogenicity, Vaccine , Incidence , Mice , Oils/adverse effects , Oils/chemistry , Rabbits , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/chemistry , Vaccination/methods , Vaccines, Subunit/adverse effects , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...