Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Diagnostics (Basel) ; 13(23)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38066833

ABSTRACT

Huntington's Disease (HD) is a devastating neurodegenerative disorder characterized by progressive motor dysfunction, cognitive impairment, and psychiatric symptoms. The early and accurate diagnosis of HD is crucial for effective intervention and patient care. This comprehensive review provides a comprehensive overview of the utilization of Artificial Intelligence (AI) powered algorithms in the diagnosis of HD. This review systematically analyses the existing literature to identify key trends, methodologies, and challenges in this emerging field. It also highlights the potential of ML and DL approaches in automating HD diagnosis through the analysis of clinical, genetic, and neuroimaging data. This review also discusses the limitations and ethical considerations associated with these models and suggests future research directions aimed at improving the early detection and management of Huntington's disease. It also serves as a valuable resource for researchers, clinicians, and healthcare professionals interested in the intersection of machine learning and neurodegenerative disease diagnosis.

2.
Diagnostics (Basel) ; 13(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37238178

ABSTRACT

Intrauterine fetal demise in women during pregnancy is a major contributing factor in prenatal mortality and is a major global issue in developing and underdeveloped countries. When an unborn fetus passes away in the womb during the 20th week of pregnancy or later, early detection of the fetus can help reduce the chances of intrauterine fetal demise. Machine learning models such as Decision Trees, Random Forest, SVM Classifier, KNN, Gaussian Naïve Bayes, Adaboost, Gradient Boosting, Voting Classifier, and Neural Networks are trained to determine whether the fetal health is Normal, Suspect, or Pathological. This work uses 22 features related to fetal heart rate obtained from the Cardiotocogram (CTG) clinical procedure for 2126 patients. Our paper focuses on applying various cross-validation techniques, namely, K-Fold, Hold-Out, Leave-One-Out, Leave-P-Out, Monte Carlo, Stratified K-fold, and Repeated K-fold, on the above ML algorithms to enhance them and determine the best performing algorithm. We conducted exploratory data analysis to obtain detailed inferences on the features. Gradient Boosting and Voting Classifier achieved 99% accuracy after applying cross-validation techniques. The dataset used has the dimension of 2126 × 22, and the label is multiclass classified as Normal, Suspect, and Pathological condition. Apart from incorporating cross-validation strategies on several machine learning algorithms, the research paper focuses on Blackbox evaluation, which is an Interpretable Machine Learning Technique used to understand the underlying working mechanism of each model and the means by which it picks features to train and predict values.

3.
Front Public Health ; 9: 729795, 2021.
Article in English | MEDLINE | ID: mdl-34595149

ABSTRACT

This paper aims to evaluate the performance of multiple non-linear regression techniques, such as support-vector regression (SVR), k-nearest neighbor (KNN), Random Forest Regressor, Gradient Boosting, and XGBOOST for COVID-19 reproduction rate prediction and to study the impact of feature selection algorithms and hyperparameter tuning on prediction. Sixteen features (for example, Total_cases_per_million and Total_deaths_per_million) related to significant factors, such as testing, death, positivity rate, active cases, stringency index, and population density are considered for the COVID-19 reproduction rate prediction. These 16 features are ranked using Random Forest, Gradient Boosting, and XGBOOST feature selection algorithms. Seven features are selected from the 16 features according to the ranks assigned by most of the above mentioned feature-selection algorithms. Predictions by historical statistical models are based solely on the predicted feature and the assumption that future instances resemble past occurrences. However, techniques, such as Random Forest, XGBOOST, Gradient Boosting, KNN, and SVR considered the influence of other significant features for predicting the result. The performance of reproduction rate prediction is measured by mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), R-Squared, relative absolute error (RAE), and root relative squared error (RRSE) metrics. The performances of algorithms with and without feature selection are similar, but a remarkable difference is seen with hyperparameter tuning. The results suggest that the reproduction rate is highly dependent on many features, and the prediction should not be based solely upon past values. In the case without hyperparameter tuning, the minimum value of RAE is 0.117315935 with feature selection and 0.0968989 without feature selection, respectively. The KNN attains a low MAE value of 0.0008 and performs well without feature selection and with hyperparameter tuning. The results show that predictions performed using all features and hyperparameter tuning is more accurate than predictions performed using selected features.


Subject(s)
COVID-19 , Birth Rate , Cluster Analysis , Humans , Reproduction , SARS-CoV-2
4.
Materials (Basel) ; 13(3)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033460

ABSTRACT

The friction welding of tube to tube plate using an external tool (FWTPET) is widely deployed in several industrial applications, such as aerospace, automotive, and power plants. Moreover, for achieving a better tensile strength and hardness in the weld zone, the friction stir processing (FSP) technique was incorporated into the FWTPET process for joining aluminum alloys (AA6063 tube, AA6061 tube plate). Furthermore, it has to be noted that FWTPET was applied for joining the AA6063 tube to the AA6061 tube plate, and FSP was deployed for reinforcing the weld zone with carbon nanotube (CNT) and silicon nitride (Si3N4) particles, thereby attaining the desirable mechanical properties. Subsequently, the Taguchi L25 orthogonal array was used for identifying the most influential input and output FWTPET + FSP process parameters. Furthermore, particle swarm optimization (PSO) and the firefly algorithm (FFA) were deployed for determining the optimized input and output FWTPET + FSP process parameters. The input process parameters include CNT, Si3N4, rotational tool speed, and depth. Furthermore, the tensile strength of the welded joint was considered as the output process parameter. The process parameters predicted by PSO and FFA were compared with the experimental values. It was witnessed that deviation between the predicted and experimental values was minimal. Moreover, it was found that FFA provided a superior tensile strength prediction than PSO.

5.
ScientificWorldJournal ; 2015: 314601, 2015.
Article in English | MEDLINE | ID: mdl-26295058

ABSTRACT

An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...