Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Jt Open ; 4(5): 315-328, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37142259

ABSTRACT

The aim of this study was to determine the effectiveness of home-based prehabilitation on pre- and postoperative outcomes in participants awaiting total knee (TKA) and hip arthroplasty (THA). A systematic review with meta-analysis of randomized controlled trials (RCTs) of prehabilitation interventions for TKA and THA. MEDLINE, CINAHL, ProQuest, PubMed, Cochrane Library, and Google Scholar databases were searched from inception to October 2022. Evidence was assessed by the PEDro scale and the Cochrane risk-of-bias (ROB2) tool. A total of 22 RCTs (1,601 patients) were identified with good overall quality and low risk of bias. Prehabilitation significantly improved pain prior to TKA (mean difference (MD) -1.02: p = 0.001), with non-significant improvements for function before (MD -0.48; p = 0.06) and after TKA (MD -0.69; p = 0.25). Small preoperative improvements were observed for pain (MD -0.02; p = 0.87) and function (MD -0.18; p = 0.16) prior to THA, but no post THA effect was found for pain (MD 0.19; p = 0.44) and function (MD 0.14; p = 0.68). A trend favouring usual care for improving quality of life (QoL) prior to TKA (MD 0.61; p = 0.34), but no effect on QoL prior (MD 0.03; p = 0.87) or post THA (MD -0.05; p = 0.83) was found. Prehabilitation significantly reduced hospital length of stay (LOS) for TKA (MD -0.43 days; p < 0.001) but not for THA (MD, -0.24; p = 0.12). Compliance was only reported in 11 studies and was excellent with a mean value of 90.5% (SD 6.82). Prehabilitation interventions improve pain and function prior to TKA and THA and reduce hospital LOS, though it is unclear if these effects enhance outcomes postoperatively.

2.
Gait Posture ; 38(3): 483-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23465758

ABSTRACT

The purpose of this study was to investigate the clinical potential of an augmented-video-based-portable-system (AVPS). The AVPS included a walkway grid mat made of vinyl flooring, flat paper bull's eye markers, four photoswitches mounted on tripods, a light-indicator, a video camera, and a computer with ProTrainer System software. The AVPS output was compared to a "gold standard" 3D Vicon Motion Analysis System both statically and dynamically over a fixed range (-90° to +90°) using a two-segment-goniometric-rig marked with both bull's eye and retroreflective markers. At each segment angle position, three trials of data were captured. The reliability of the AVPS was also tested using three raters. Further twelve, young, healthy subjects participated in a concurrent validity study in which they performed six gait trials which were simultaneously recorded by both systems. Both motion analysis systems showed low levels of intra subject variability in all kinematic variables indicated by the size of the standard deviations across the six trials. There were no significant differences between the motion systems with respect to the kinematic variables (P>0.05). The results showed a high intra- and inter-rater reliability for both the kinematic and temporo-spatial parameters. With respect to gait events the lowest ICC value for the intra-rater reliability test was 0.993 for the kinematic variables, and ranged from 0.941 to 0.956 for the temporo-spatial variables and 0.731 to 0.954 for the tibia inclination angles. The validation data suggest the AVPS is capable of generating highly reliable and repeatable data when applied to normal subjects and could be used within the clinical setting.


Subject(s)
Gait/physiology , Software , Video Recording/methods , Adult , Biomechanical Phenomena , Female , Humans , Male , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...