Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Microbe Interact ; 29(5): 417-30, 2016 May.
Article in English | MEDLINE | ID: mdl-26959837

ABSTRACT

Genome-wide association studies can identify novel genomic regions and genes that affect quantitative traits. Fusarium head blight is a destructive disease caused by Fusarium graminearum that exhibits several quantitative traits, including aggressiveness, mycotoxin production, and fungicide resistance. Restriction site-associated DNA sequencing was performed for 220 isolates of F. graminearum. A total of 119 isolates were phenotyped for aggressiveness and deoxynivalenol (DON) production under natural field conditions across four environments. The effective concentration of propiconazole that inhibits isolate growth in vitro by 50% was calculated for 220 strains. Approximately 29,000 single nucleotide polymorphism markers were associated to each trait, resulting in 50, 29, and 74 quantitative trait nucleotides (QTNs) that were significantly associated to aggressiveness, DON production, and propiconazole sensitivity, respectively. Approximately 41% of these QTNs caused nonsynonymous substitutions in predicted exons, while the remainder were synonymous substitutions or located in intergenic regions. Three QTNs associated with propiconazole sensitivity were significant after Bonferroni correction. These QTNs were located in genes not previously associated with azole sensitivity. The majority of the detected QTNs were located in genes with predicted regulatory functions, suggesting that nucleotide variation in regulatory genes plays a major role in the corresponding quantitative trait variation.


Subject(s)
Fungal Proteins/metabolism , Fungicides, Industrial/pharmacology , Fusarium/drug effects , Fusarium/metabolism , Genome-Wide Association Study , Triazoles/pharmacology , Trichothecenes/biosynthesis , Fungal Proteins/genetics , Fungicides, Industrial/administration & dosage , Fusarium/genetics , Gene Expression Regulation, Fungal/physiology , Quantitative Trait Loci , Triazoles/administration & dosage , Trichothecenes/metabolism
2.
Theor Appl Genet ; 127(7): 1527-36, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24852306

ABSTRACT

KEY MESSAGE: The rye-derived dwarfing gene Ddw1 on chromosome 5R acts in triticale in considerably reducing plant height, increasing FHB severity and delaying heading stage. Triticale, an amphiploid hybrid between durum wheat and rye, is an European cereal mainly grown in Germany, France, Poland, and Belarus for feeding purposes. Dwarfing genes might further improve the genetic potential of triticale concerning lodging resistance and yield. However, they might have pleiotropic effects on other, agronomically important traits including Fusarium head blight. Therefore, we analyzed a population of 199 doubled haploid (DH) lines of the cross HeTi117-06 × Pigmej for plant height, heading stage, and FHB severity across 2 locations and 2 years. The most prominent QTL was detected on chromosome 5R explaining 48, 77, and 71 % of genotypic variation for FHB severity, plant height, and heading stage, respectively. The frequency of recovery in cross validation was ≥90 % for all three traits. Because the markers that detect dwarfing gene Ddw1 in rye are also in our population the most closely linked markers, we assume that this major QTL resembles Ddw1. For FHB severity two, for plant height three, and for heading stage five additional QTL were detected. Caused by the considerable genetic variation for heading stage and FHB severity within the progeny with the dwarfing allele, short-strawed, early heading and FHB-resistant lines can be developed when population size is large enough.


Subject(s)
Fusarium/isolation & purification , Genes, Plant , Quantitative Trait Loci , Secale/genetics , Secale/microbiology , Alleles , Breeding , Disease Resistance/genetics , Genetic Linkage , Genetic Variation , Genotype , Haploidy , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Secale/growth & development
3.
Phytopathology ; 102(1): 128-34, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22165985

ABSTRACT

Fusarium head blight (FHB), caused by Fusarium graminearum sensu stricto (s.s.), causes tremendous annual yield losses in wheat worldwide. Variation of aggressiveness of isolates from individual field populations in terms of FHB infection and deoxynivalenol (DON) concentration in the host are important population parameters reflecting parasitic ability. Our main objective was to estimate the variation of both traits within three populations of F. graminearum s.s., each consisting of 30 single-spore isolates collected from small wheat fields in Germany, and to compare it with 11 isolates of a collection (F. graminearum collection) from four countries. The same isolates were characterized using 19 single-sequence repeat markers. All isolates were spray inoculated on a moderately resistant spring wheat cultivar at two field locations over 2 years (i.e., in four environments). The genotypic proportion of phenotypic variance (σ(2)(G)) within populations was significant (P < 0.01) for both traits, and the σ(2)(G) × environment interaction was even more important for mean FHB severity. Ranges in mean FHB severity and DON concentration in the host were only slightly smaller for the field populations than for the F. graminearum collection. Both traits were significantly (P < 0.05) correlated within and across populations. A further partitioning of σ(2)(G) revealed 72% of σ(2)(G) within and 28% of σ(2)(G) across populations for both traits. Molecular variance of the three populations was similarly distributed (73.6% within versus 26.4% between populations). In view of this high within-field variation for traits of parasitic ability and selection, neutral molecular markers, multiple resistance genes of different origin should be employed in wheat breeding programs to obtain a long-term stable FHB resistance.


Subject(s)
Fusarium/isolation & purification , Genetic Variation/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Trichothecenes/metabolism , Triticum/chemistry , Alleles , Chromosome Mapping , Fusarium/genetics , Fusarium/pathogenicity , Genetic Markers , Genotype , Host-Pathogen Interactions , Microsatellite Repeats/genetics , Phenotype , Plant Immunity , Time Factors , Trichothecenes/analysis , Triticum/immunology , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...