Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 254(Pt 1): 127577, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37866568

ABSTRACT

Lactate is a metabolite that holds significant importance in human healthcare, biotechnology, and the food industry. The need for lactate monitoring has led to the development of various devices for measuring lactate concentration. Traditional laboratory methods, which involve extracting blood samples through invasive techniques such as needles, are costly, time-consuming, and require in-person sampling. To overcome these limitations, new technologies for lactate monitoring have emerged. Wearable biosensors are a promising approach that offers non-invasiveness, low cost, and short response times. They can be easily attached to the skin and provide continuous monitoring. In this review, we evaluate different types of wearable biosensors for lactate monitoring using lactate oxidase enzyme as biological recognition element and free enzyme systems.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Humans , Sweat , Biosensing Techniques/methods , Lactic Acid/metabolism
2.
Environ Sci Pollut Res Int ; 28(10): 12144-12152, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33009616

ABSTRACT

Narrow band gap of ferrites makes it a good photocatalyst, and it plays very prominent role in the level of degradation of organic dyes by photocatalysis. In the current study, bismuth ferrite (BFO) nanoparticles were synthesized by auto-combustion technique. The synthesized BFO particles have the average crystallite size of 33 nm and band gap energy of 1.9 eV. As revealed by microscopic images, uniform, distinct, and hexahedral shaped BFO nanoparticles of 42.7 nm are formed. The BFO nanoparticles exhibited visible and solar light-mediated photocatalytic activity in degrading Acid Yellow-17. The optimum pH and catalyst loading were found to be pH 5 and 0.2 g/L respectively. Around complete degradation under solar and 95% degradation under visible light could be achieved within 135 min of irradiation. Around 85% and 83% chemical oxygen demand (COD) removal could also be achieved under solar and visible light respectively. The degradation followed first-order kinetics in terms of COD removal. The BFO nanoparticles are promising as solar light active catalysts for wastewater treatment.


Subject(s)
Bismuth , Nanoparticles , Azo Compounds , Catalysis , Ferric Compounds , Water
3.
Environ Sci Pollut Res Int ; 25(14): 13881-13893, 2018 May.
Article in English | MEDLINE | ID: mdl-29512012

ABSTRACT

Mixed-phase bismuth ferrite (BFO) nanoparticles were prepared by co-precipitation method using potassium hydroxide as the precipitant. X-ray diffractogram (XRD) of the particles showed the formation of mixed-phase BFO nanoparticles containing BiFeO3/Bi25FeO40 phases with the crystallite size of 70 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of quasi-spherical particles. The BFO nanoparticles were uniform sized with narrow size range and with the average hydrodynamic diameter of 76 nm. The band gap energy of 2.2 eV showed its ability to absorb light even in the visible range. Water contaminated with Acid Yellow (AY-17) and Reactive Blue (RB-19) dye was treated by photocatalysis under UV, visible, and solar light irradiation using the BFO nanoparticles. The BFO nanoparticles showed maximum photocatalytical activity under solar light as compared to UV and visible irradiations, and photocatalysis was favored under acidic pH. Complete degradation of AY-17 dyes and around 95% degradation of RB-19 could be achieved under solar light at pH 5. The kinetics of degradation followed the Langmuir-Hinshelhood kinetic model showing that the heterogeneous photocatalysis is adsorption controlled. The findings of this work prove the synthesized BFO nanoparticles as promising photocatalysts for the treatment of dye-contaminated industrial wastewater.


Subject(s)
Bismuth/chemistry , Coloring Agents/analysis , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Photolysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Anthraquinones/analysis , Kinetics , Light , Pyrazoles/analysis , Ultraviolet Rays
4.
Environ Sci Pollut Res Int ; 25(4): 3731-3744, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29168135

ABSTRACT

Polyaniline-TiO2 (PANI-TiO2) nanocomposite was prepared by in situ polymerisation method. X-ray diffractogram (XRD) showed the formation of PANI-TiO2 nanocomposite with the average crystallite size of 46 nm containing anatase TiO2. The PANI-TiO2 nanocomposite consisted of short-chained fibrous structure of PANI with spherical TiO2 nanoparticles dispersed at the tips and edge of the fibres. The average hydrodynamic diameter of the nanocomposite was 99.5 nm. The band gap energy was 2.1 eV which showed its ability to absorb light in the visible range. The nanocomposite exhibited better visible light-mediated photocatalytic activity than TiO2 (Degussa P25) in terms of degradation of Reactive Blue (RB-19) dye. The photocatalysis was favoured under initial acidic pH, and complete degradation of 50 mg/L dye could be achieved at optimum catalyst loading of 1 g/L. The kinetics of degradation followed the Langmuir-Hinshelhood model. PANI-TiO2 nanocomposite showed almost similar photocatalytic activity under UV and visible light as well as in the solar light which comprises of radiation in both UV and visible light range. Chemical oxygen demand removal of 86% could also be achieved under visible light, confirming that simultaneous mineralization of the dye occurred during photocatalysis. PANI-TiO2 nanocomposites are promising photocatalysts for the treatment of industrial wastewater containing RB-19 dye.


Subject(s)
Anthraquinones/chemistry , Coloring Agents/chemistry , Metal Nanoparticles/analysis , Nanocomposites/analysis , Photolysis , Water Pollutants, Chemical/chemistry , Aniline Compounds/analysis , Anthraquinones/radiation effects , Coloring Agents/radiation effects , Light , Titanium/analysis , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...