Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Virus Res ; 336: 199225, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37741345

ABSTRACT

Klebsiella pneumoniae poses a major global challenge due to its virulence, multidrug resistance, and nosocomial nature. Thus, bacteriophage-derived proteins are extensively being investigated as a means to combat this bacterium. In this study, we explored the enzymatic specificity of depolymerase gp531, encoded by the jumbo bacteriophage vB_KleM_RaK2 (RaK2). We used two different methods to modify the reducing end of the oligosaccharides released during capsule hydrolysis with gp531. Subsequent acidic cleavage with TFA, followed by TLC and HPLC-MS analyses, revealed that RaK2 gp531 is a ß-(1→4)-endoglucosidase. The enzyme specifically recognizes and cleaves the capsular polysaccharide (CPS) of the Klebsiella pneumoniae K54 serotype, releasing K-unit monomers (the main product), dimers, and trimers. Depolymerase gp531 remains active from 10 to 50 °C and in the pH 3-8 range, indicating its stability and versatility. Additionally, we demonstrated that gp531's activity is not affected by CPS acetylation, which is influenced by the growth conditions of the bacterial culture. Overall, our findings provide valuable insights into the enzymatic activity of the first characterized depolymerase targeting the capsule of the clinically relevant K54 serotype of K. pneumoniae.

2.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298271

ABSTRACT

The structures of the Caudovirales phage tails are key factors in determining the host specificity of these viruses. However, because of the enormous structural diversity, the molecular anatomy of the host recognition apparatus has been elucidated in only a number of phages. Klebsiella viruses vB_KleM_RaK2 (RaK2) and phiK64-1, which form a new genus Alcyoneusvirus according to the ICTV, have perhaps one of the most structurally sophisticated adsorption complexes of all tailed viruses described to date. Here, to gain insight into the early steps of the alcyoneusvirus infection process, the adsorption apparatus of bacteriophage RaK2 is studied in silico and in vitro. We experimentally demonstrate that ten proteins, gp098 and gp526-gp534, previously designated as putative structural/tail fiber proteins (TFPs), are present in the adsorption complex of RaK2. We show that two of these proteins, gp098 and gp531, are essential for attaching to Klebsiella pneumoniae KV-3 cells: gp531 is an active depolymerase that recognizes and degrades the capsule of this particular host, while gp098 is a secondary receptor-binding protein that requires the coordinated action of gp531. Finally, we demonstrate that RaK2 long tail fibers consist of nine TFPs, seven of which are depolymerases, and propose a model for their assembly.


Subject(s)
Bacteriophages , Myoviridae , Adsorption , Bacteriophages/genetics , Klebsiella pneumoniae , Host Specificity , Genome, Viral
3.
Foods ; 10(7)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203373

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) O26:H11 is an emerging foodborne pathogen of growing concern. Since current strategies to control microbial contamination in foodstuffs do not guarantee the elimination of O26:H11, novel approaches are needed. Bacteriophages present an alternative to traditional biocontrol methods used in the food industry. Here, a previously isolated bacteriophage vB_EcoM_VR26 (VR26), adapted to grow at common refrigeration temperatures (4 and 8 °C), has been evaluated for its potential as a biocontrol agent against O26:H11. After 2 h of treatment in broth, VR26 reduced O26:H11 numbers (p < 0.01) by > 2 log10 at 22 °C, and ~3 log10 at 4 °C. No bacterial regrowth was observed after 24 h of treatment at both temperatures. When VR26 was introduced to O26:H11-inoculated lettuce, ~2.0 log10 CFU/piece reduction was observed at 4, 8, and 22 °C. No survivors were detected after 4 and 6 h at 8 and 4 °C, respectively. Although at 22 °C, bacterial regrowth was observed after 6 h of treatment, O26:H11 counts on non-treated samples were >2 log10 CFU/piece higher than on phage-treated ones (p < 0.02). This, and the ability of VR26 to survive over a pH range of 3-11, indicates that VR26 could be used to control STEC O26:H11 in the food industry.

4.
Viruses ; 13(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33673419

ABSTRACT

Achromobacter spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of Achromobacter phages are available in GenBank, and nearly all of those phages were isolated on Achromobacter xylosoxidans. Here, we report the isolation and characterization of bacteriophage vB_AchrS_AchV4. To the best of our knowledge, vB_AchrS_AchV4 is the first virus isolated from Achromobacter spanius. Both vB_AchrS_AchV4 and its host, Achromobacter spanius RL_4, were isolated in Lithuania. VB_AchrS_AchV4 is a siphovirus, since it has an isometric head (64 ± 3.2 nm in diameter) and a non-contractile flexible tail (232 ± 5.4). The genome of vB_AchrS_AchV4 is a linear dsDNA molecule of 59,489 bp with a G+C content of 62.8%. It contains no tRNA genes, yet it includes 82 protein-coding genes, of which 27 have no homologues in phages. Using bioinformatics approaches, 36 vB_AchrS_AchV4 genes were given a putative function. A further four were annotated based on the results of LC-MS/MS. Comparative analyses revealed that vB_AchrS_AchV4 is a singleton siphovirus with no close relatives among known tailed phages. In summary, this work not only describes a novel and unique phage, but also advances our knowledge of genetic diversity and evolution of Achromobacter bacteriophages.


Subject(s)
Achromobacter/genetics , Bacteriophages/genetics , Base Composition/genetics , Computational Biology/methods , DNA/genetics , DNA Viruses/genetics , DNA, Viral/genetics , Genome, Viral/genetics , Phylogeny , RNA, Transfer/genetics , Sequence Analysis, DNA/methods
5.
Arch Virol ; 165(11): 2685-2687, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32797340

ABSTRACT

We present here the results of the analysis of the complete genome sequence of a lytic bacteriophage, vB_ButM_GuL6, which is the first virus isolated from Buttiauxella. Electron microscopy revealed that vB_ButM_GuL6 belongs to the family Myoviridae, order Caudovirales. The genome of vB_ButM_GuL6 is a linear, circularly permuted 178,039-bp dsDNA molecule with a GC content of 43.4%. It has been predicted to contain 282 protein-coding genes and two tRNA genes, tRNA-Met and tRNA-Gly. Using bioinformatics approaches, 99 (36%) of the vB_ButM_GuL6 genes were assigned a putative function. Genome-wide comparisons and phylogenetic analysis indicated that vB_ButM_GuL6 represents a new species of the subfamily Tevenvirinae and is most closely related to Escherichia virus RB43. These phages, together with Cronobacter phages Miller, CfP1, and IME-CF2, likely form a new genus within the subfamily Tevenvirinae.


Subject(s)
Enterobacteriaceae/virology , Genome, Viral , Myoviridae/classification , Phylogeny , Crataegus/microbiology , DNA, Viral/genetics , Enterobacteriaceae/isolation & purification , Fruit/microbiology , Lithuania , Microscopy, Electron , Myoviridae/isolation & purification , Open Reading Frames , Sequence Analysis, DNA , Viral Plaque Assay , Viral Proteins/analysis , Viral Proteins/chemistry , Whole Genome Sequencing
6.
Sci Rep ; 10(1): 788, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964920

ABSTRACT

Human activating signal cointegrator homology (ASCH) domain-containing proteins are widespread and diverse but, at present, the vast majority of those proteins have no function assigned to them. This study demonstrates that the 103-amino acid Escherichia coli protein YqfB, previously identified as hypothetical, is a unique ASCH domain-containing amidohydrolase responsible for the catabolism of N4-acetylcytidine (ac4C). YqfB has several interesting and unique features: i) it is the smallest monomeric amidohydrolase described to date, ii) it is active towards structurally different N4-acylated cytosines/cytidines, and iii) it has a high specificity for these substrates (kcat/Km up to 2.8 × 106 M-1 s-1). Moreover, our results suggest that YqfB contains a unique Thr-Lys-Glu catalytic triad, and Arg acting as an oxyanion hole. The mutant lacking the yqfB gene retains the ability to grow, albeit poorly, on N4-acetylcytosine as a source of uracil, suggesting that an alternative route for the utilization of this compound exists in E. coli. Overall, YqfB ability to hydrolyse various N4-acylated cytosines and cytidines not only sheds light on the long-standing mystery of how ac4C is catabolized in bacteria, but also expands our knowledge of the structural diversity within the active sites of amidohydrolases.


Subject(s)
Amidohydrolases/genetics , Amidohydrolases/metabolism , Cytosine/metabolism , Escherichia coli/enzymology , Acylation , Amidohydrolases/chemistry , Catalytic Domain , Crystallography, X-Ray , Cytosine/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Domains , Substrate Specificity
7.
Viruses ; 10(11)2018 10 25.
Article in English | MEDLINE | ID: mdl-30366363

ABSTRACT

A novel low-temperature siphovirus, vB_PagS_Vid5 (Vid5), was isolated in Lithuania using Pantoea agglomerans isolate for the phage propagation. The 61,437 bp genome of Vid5 has a G⁻C content of 48.8% and contains 99 probable protein encoding genes and one gene for tRNASer. A comparative sequence analysis revealed that 46 out of 99 Vid5 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 33 Vid5 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a cluster of genes possibly involved in the biosynthesis of 7-deazaguanine derivatives was identified. Notably, one of these genes encodes a putative preQ0/preQ1 transporter, which has never been detected in bacteriophages to date. A proteomic analysis led to the experimental identification of 11 virion proteins, including nine that were predicted by bioinformatics approaches. Based on the phylogenetic analysis, Vid5 cannot be assigned to any genus currently recognized by ICTV, and may represent a new one within the family of Siphoviridae.


Subject(s)
Bacteriophages/genetics , Bacteriophages/metabolism , Pantoea/virology , Bacteriophages/ultrastructure , Cold Temperature , Computational Biology , Genes, Viral , Genome, Viral , Genomics/methods , Guanosine/analogs & derivatives , Guanosine/biosynthesis , Host Specificity , Multigene Family , Phylogeny , Proteomics/methods , Sequence Analysis, DNA , Siphoviridae/genetics , Siphoviridae/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
8.
Molecules ; 23(7)2018 06 25.
Article in English | MEDLINE | ID: mdl-29941849

ABSTRACT

An inducible promoter region, PTTMP (tetramethylpyrazine [TTMP]), has been identified upstream of the tpdABC operon, which contains the genes required for the initial degradation of 2,3,5,6-tetramethylpyrazine in Rhodococcus jostii TMP1 bacteria. In this work, the promoter region was fused with the gene for the enhanced green fluorescent protein (EGFP) to investigate the activity of PTTMP by measuring the fluorescence of bacteria. The highest promoter activity was observed when bacteria were grown in a nutrient broth (NB) medium supplemented with 5 mM 2,3,5,6-tetramethylpyrazine for 48 h. Using a primer extension reaction, two transcriptional start sites for tpdA were identified, and the putative −35 and −10 promoter motifs were determined. The minimal promoter along with two 15 bp long direct repeats and two 7 bp inverted sequences were identified. Also, the influence of the promoter elements on the activity of PTTMP were determined using site-directed mutagenesis. Furthermore, PTTMP was shown to be induced by pyrazine derivatives containing methyl groups in the 2- and 5-positions of the heterocyclic ring, in the presence of the LuxR family transcriptional activator TpdR.


Subject(s)
Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Pyrazines/pharmacology , Rhodococcus/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/genetics , Rhodococcus/drug effects , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
9.
Arch Virol ; 163(1): 105-114, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29018963

ABSTRACT

A novel low-temperature Escherichia coli phage vB_EcoS_NBD2 was isolated in Lithuania from agricultural soil. With an optimum temperature for plating around 20 °C, vB_EcoS_NBD2 efficiently produced plaques on Escherichia coli NovaBlue (DE3) at a temperature range of 10-30 °C, yet failed to plate at temperatures above 35 °C. Phage vB_EcoS_NBD2 virions have a siphoviral morphology with an isometric head (65 nm in diameter), and a non-contractile flexible tail (170 nm). The 51,802-bp genome of vB_EcoS_NBD2 has a G + C content of 49.8%, and contains 87 probable protein-encoding genes as well as 1 gene for tRNASer. Comparative sequence analysis revealed that 22 vB_EcoS_NBD2 ORFs encode unique proteins that have no reliable identity to database entries. Based on homology to biologically defined proteins and/or proteomics analysis, 36 vB_EcoS_NBD2 ORFs were given a putative functional annotation, including 20 genes coding for morphogenesis-related proteins and 13 associated with DNA metabolism. Phylogenetic analysis revealed that vB_EcoS_NBD2 belongs to the subfamily Tunavirinae, but cannot be assigned to any genus currently recognized by ICTV.


Subject(s)
Coliphages/genetics , Escherichia coli/virology , DNA Repair , DNA, Viral , Genome, Viral , Phylogeny
10.
Genome Announc ; 5(20)2017 May 18.
Article in English | MEDLINE | ID: mdl-28522702

ABSTRACT

Here, we announce the complete genome sequence of the Escherichia coli myophage vB_EcoM_Alf5 belonging to the genus Felixo1virus, whose members have not been comprehensively studied at the molecular level. Phage vB_EcoM_Alf5 infects E. coli K-12-derived laboratory strains and therefore is well suited for functional studies.

11.
J Virol ; 91(8)2017 04 15.
Article in English | MEDLINE | ID: mdl-28122988

ABSTRACT

This is the first report on a myophage that infects Arthrobacter A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order CaudoviralesIMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such "chimeric" myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus Arthrobacter.


Subject(s)
Arthrobacter/virology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Myoviridae/genetics , Myoviridae/isolation & purification , Soil Microbiology , Bacteriophages/ultrastructure , Base Composition , Computational Biology , DNA, Viral/chemistry , DNA, Viral/genetics , Gene Order , Genome, Viral , Microscopy, Electron, Transmission , Myoviridae/ultrastructure , Open Reading Frames , Phylogeny , Sequence Analysis, DNA , Viral Tail Proteins/genetics , Virion/ultrastructure
12.
RNA ; 22(12): 1871-1883, 2016 12.
Article in English | MEDLINE | ID: mdl-27852927

ABSTRACT

Tricyclic wyosine derivatives are found at position 37 of eukaryotic and archaeal tRNAPhe In Archaea, the intermediate imG-14 is targeted by three different enzymes that catalyze the formation of yW-86, imG, and imG2. We have suggested previously that a peculiar methyltransferase (aTrm5a/Taw22) likely catalyzes two distinct reactions: N1-methylation of guanosine to yield m1G; and C7-methylation of imG-14 to yield imG2. Here we show that the recombinant aTrm5a/Taw22-like enzymes from both Pyrococcus abyssi and Nanoarchaeum equitans indeed possess such dual specificity. We also show that substitutions of individual conservative amino acids of P. abyssi Taw22 (P260N, E173A, and R174A) have a differential effect on the formation of m1G/imG2, while replacement of R134, F165, E213, and P262 with alanine abolishes the formation of both derivatives of G37. We further demonstrate that aTrm5a-type enzyme SSO2439 from Sulfolobus solfataricus, which has no N1-methyltransferase activity, exhibits C7-methyltransferase activity, thereby producing imG2 from imG-14. We thus suggest renaming such aTrm5a methyltransferases as Taw21 to distinguish between monofunctional and bifunctional aTrm5a enzymes.


Subject(s)
Archaea/metabolism , Guanosine/analogs & derivatives , Methyltransferases/metabolism , RNA, Transfer, Phe/metabolism , Amino Acid Sequence , Guanosine/biosynthesis , Methyltransferases/chemistry , RNA, Transfer, Phe/chemistry , Sequence Homology, Amino Acid
13.
Viruses ; 7(12): 6163-81, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26633460

ABSTRACT

Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli) strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS). We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.


Subject(s)
Coliphages/physiology , Escherichia coli/virology , Host Specificity , Myoviridae/physiology , O Antigens/analysis , Virus Attachment , Coliphages/chemistry , Coliphages/genetics , Coliphages/isolation & purification , Escherichia coli/chemistry , Escherichia coli/genetics , Genome, Viral , Genomics , Lipopolysaccharides/analysis , Myoviridae/chemistry , Myoviridae/genetics , Myoviridae/isolation & purification , Proteome/analysis , Proteomics , Temperature , Virion/ultrastructure , Virus Replication
14.
Arch Virol ; 160(5): 1367-70, 2015 May.
Article in English | MEDLINE | ID: mdl-25753428

ABSTRACT

The complete genome sequences of four low-temperature Escherichia coli-specific tevenviruses, vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, were determined. Genomic comparisons including recently described genomes of vb_EcoM-VR7 and JS98 as well as phage T4 allowed the identification of two genetic groups that were consistent with defined host-range phenotypes. Group A included the broad-host-range phages vb_EcoM-VR5 and JS98, while group B included vb_EcoM-VR7, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, which all had somewhat limited host ranges. All four sequenced phages had genomes that were similar in length (~170 kb) and GC content (~40 %), and, with the exception of vb_EcoM-VR5, at the nucleotide level, they were much more closely related to each other than either was to any other tevenvirus currently characterized. Nevertheless, the overall genome organization of vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26 was comparable to that seen in tevenviruses.


Subject(s)
Coliphages/genetics , Base Composition , Cluster Analysis , Coliphages/isolation & purification , Coliphages/physiology , Escherichia coli/virology , Host Specificity , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology
15.
PLoS One ; 9(10): e111230, 2014.
Article in English | MEDLINE | ID: mdl-25333962

ABSTRACT

This is the first report on a complete genome sequence and biological characterization of the phage that infects Arthrobacter. A novel virus vB_ArS-ArV2 (ArV2) was isolated from soil using Arthrobacter sp. 68b strain for phage propagation. Based on transmission electron microscopy, ArV2 belongs to the family Siphoviridae and has an isometric head (∼63 nm in diameter) with a non-contractile flexible tail (∼194×10 nm) and six short tail fibers. ArV2 possesses a linear, double-stranded DNA genome (37,372 bp) with a G+C content of 62.73%. The genome contains 68 ORFs yet encodes no tRNA genes. A total of 28 ArV2 ORFs have no known functions and lack any reliable database matches. Proteomic analysis led to the experimental identification of 14 virion proteins, including 9 that were predicted by bioinformatics approaches. Comparative phylogenetic analysis, based on the amino acid sequence alignment of conserved proteins, set ArV2 apart from other siphoviruses. The data presented here will help to advance our understanding of Arthrobacter phage population and will extend our knowledge about the interaction between this particular host and its phages.


Subject(s)
Amino Acid Sequence/genetics , Arthrobacter/genetics , Bacteriophages/genetics , Genome, Viral , Arthrobacter/virology , Conserved Sequence , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
16.
Arch Virol ; 159(2): 327-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23948816

ABSTRACT

The bacteriophage T4 insertion-substitution (I/S) vector system has become one of the most important tools for the introduction of site-directed mutations into the T4 genome. In this study, we show that the I/S phage T4 K10 carries two point mutations within the gene for polynucleotide kinase pseT, resulting in amino acid substitutions G14D and R229H. The G14D mutation impairs 5'-kinase activity in vivo as well as in vitro and leads to diminished processing at secondary sites of several RegB-cleaved transcripts.


Subject(s)
Bacteriophage T4/enzymology , Bacteriophage T4/metabolism , Mutation, Missense , Polynucleotide 5'-Hydroxyl-Kinase/genetics , Polynucleotide 5'-Hydroxyl-Kinase/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Amino Acid Substitution , Bacteriophage T4/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism
17.
PLoS One ; 8(4): e60717, 2013.
Article in English | MEDLINE | ID: mdl-23593293

ABSTRACT

At 346 kbp in size, the genome of a jumbo bacteriophage vB_KleM-RaK2 (RaK2) is the largest Klebsiella infecting myovirus genome sequenced to date. In total, 272 out of 534 RaK2 ORFs lack detectable database homologues. Based on the similarity to biologically defined proteins and/or MS/MS analysis, 117 of RaK2 ORFs were given a functional annotation, including 28 RaK2 ORFs coding for structural proteins that have no reliable homologues to annotated structural proteins in other organisms. The electron micrographs revealed elaborate spike-like structures on the tail fibers of Rak2, suggesting that this phage is an atypical myovirus. While head and tail proteins of RaK2 are mostly myoviridae-related, the bioinformatics analysis indicate that tail fibers/spikes of this phage are formed from podovirus-like peptides predominantly. Overall, these results provide evidence that bacteriophage RaK2 differs profoundly from previously studied viruses of the Myoviridae family.


Subject(s)
Klebsiella/virology , Myoviridae/physiology , Bacteriolysis , Gene Order , Genome, Viral , Host-Pathogen Interactions , Molecular Sequence Data , Myoviridae/ultrastructure , Nucleotides/metabolism , Open Reading Frames , RNA, Transfer/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Tropism , Virion/ultrastructure , Virus Replication
18.
Arch Virol ; 157(12): 2431-5, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22907825

ABSTRACT

A proposed new genus of the family Myoviridae, "rV5-like viruses", includes two lytic bacteriophages: Escherichia coli O157: H7-specific bacteriophage rV5 and Salmonella phage PVP-SE1. Here, we present basic properties and genomic characterization of a novel rV5-like phage, vB_EcoM_FV3, which infects E. coli K-12-derived laboratory strains and replicates at high temperature (up to 47 °C). The 136,947-bp genome of vB_EcoM_FV3 contains 218 open reading frames and encodes 5 tRNAs. The genomic content and organization of vB_EcoM_FV3 is more similar to that of rV5 than to PVP-SE1, but all three phages share similar morphological characteristics and form a homogeneous phage group.


Subject(s)
Escherichia coli K12/virology , Myoviridae/classification , Myoviridae/genetics , Bacterial Adhesion , Cold Temperature , DNA, Viral/genetics , Escherichia coli K12/classification , Gene Expression Regulation, Viral , Genome, Viral , Molecular Sequence Data , Myoviridae/physiology , Myoviridae/ultrastructure , Open Reading Frames , Promoter Regions, Genetic , RNA, Bacterial/genetics , RNA, Transfer/genetics , Virus Replication
19.
J Virol ; 86(9): 5406, 2012 May.
Article in English | MEDLINE | ID: mdl-22492928

ABSTRACT

Despite the fact that multidrug-resistant Klebsiella sp. strains emerge rapidly (Xu J, et al., Adv. Mater. Res. 268-270:1954-1956, 2011) and bacteriophages have been reported to be useful in controlling these bacteria (Kumari S, Harjai K, Chhibber S, J. Med. Microbiol. 60:205-210, 2011), the complete genome sequences of only five Klebsiella phages (four siphoviruses and one myovirus) can be found in databases. In this paper, we report on the complete genome sequence of Klebsiella sp.-infecting bacteriophage vB_KleM_RaK2. With a genome size of 345,809 bp, this is the second largest myovirus and the largest Klebsiella phage sequenced to date. This phage differs substantially from other myoviruses since 411 out of 534 vB_KleM_RaK2 open reading frames have no known functions and lack any reliable database matches. Comparative analysis of the genome sequence of vB_KleM_RaK2 suggests that this phage forms a distinct phylogenetic branch within the family Myoviridae of tailed bacteriophages.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Bacteriophages/classification , Bacteriophages/isolation & purification , Klebsiella/virology , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny
20.
Arch Virol ; 156(10): 1913-6, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21830070

ABSTRACT

The complete genome sequence of the T4-related low-temperature Escherichia coli bacteriophage vB_EcoM-VR7 was determined. The genome sequence is 169,285 bp long, with a G+C content of 40.3%. Overall, 95% of the phage genome is coding. It encodes 293 putative protein-encoding open reading frames (ORFs) and tRNA(Met). More than half (59%) of the genomic DNA lacks significant homology with the DNA of T4, but once translated, 72% of the vB_EcoM-VR7 genome (211 ORFs) encodes protein homologues of T4 genes. Overall, 46 vB_EcoM-VR7 ORFs have no homologues in T4 but are derived from other T4-related phages, nine ORFs show similarities to bacterial or non-T4-related phage genes, and 27 ORFs are unique to vB_EcoM-VR7. This phage lacks several T4 enzymes involved in host DNA degradation; however, there is extensive representation of the DNA replication, recombination and repair enzymes as well as the viral capsid and tail structural genes.


Subject(s)
Bacteriophages/genetics , Bacteriophages/isolation & purification , Escherichia coli/virology , Genome, Viral , Sewage/virology , Bacteriophages/classification , Base Sequence , Molecular Sequence Data , Open Reading Frames , Temperature , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...