Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073057

ABSTRACT

Metabolic FLIM (fluorescence lifetime imaging) is used to image bioenergetic status in cells and tissue. Whereas an attribution of the fluorescence lifetime of coenzymes as an indicator for cell metabolism is mainly accepted, it is debated whether this is valid for the redox state of cells. In this regard, an innovative algorithm using the lifetime characteristics of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) to calculate the fluorescence lifetime induced redox ratio (FLIRR) has been reported so far. We extended the FLIRR approach and present new results, which includes FLIM data of the various enzymes, such as NAD(P)H, FAD, as well as flavin mononucleotide (FMN). Our algorithm uses a two-exponential fitting procedure for the NAD(P)H autofluorescence and a three-exponential fit of the flavin signal. By extending the FLIRR approach, we introduced FLIRR1 as protein-bound NAD(P)H related to protein-bound FAD, FLIRR2 as protein-bound NAD(P)H related to free (unbound) FAD and FLIRR3 as protein-bound NAD(P)H related to protein-bound FMN. We compared the significance of extended FLIRR to the metabolic index, defined as the ratio of protein-bound NAD(P)H to free NAD(P)H. The statistically significant difference for tumor and normal cells was found to be highest for FLIRR1.


Subject(s)
Flavin Mononucleotide/chemistry , Flavin-Adenine Dinucleotide/chemistry , NADP/chemistry , Optical Imaging/methods , Biochemical Phenomena , HaCaT Cells , Humans , Oxidation-Reduction
2.
J Biophotonics ; 14(7): e202100024, 2021 07.
Article in English | MEDLINE | ID: mdl-33749988

ABSTRACT

Two-photon fluorescence lifetime imaging is a versatile laboratory technique in the field of biophotonics and its importance is also growing in the field of in vivo diagnostics for medical purposes. After years of experience in dermatology, endoscopic implementations of the technique are now posing new technical challenges. To develop, test, and compare instrumental solutions for this purpose suitable reference samples have been devised and tested. These reference samples can serve as reliable NADH- and FAD-mimicking optical phantoms for 2-photon fluorescence lifetime imaging, as they can be prepared relatively easily with reproducible and stable characteristics for this quite relevant diagnostic technique. The reference samples (mixtures of coumarin 1 and coumarin 6 in ethanol with suitable amounts of 4-hydroxy-TEMPO) have been tuned to exhibit spectral and temporal fluorescence characteristics very similar to those of NADH and FAD, the two molecules most frequently utilized to characterize cell metabolism.


Subject(s)
Flavin-Adenine Dinucleotide , NAD , Coumarins , Fluorescence , Humans , Microscopy, Fluorescence, Multiphoton , Optical Imaging
3.
Cytometry A ; 95(1): 34-46, 2019 01.
Article in English | MEDLINE | ID: mdl-30211978

ABSTRACT

More than 60 years ago, the idea was introduced that NADH autofluorescence could be used as a marker of cellular redox state and indirectly also of cellular energy metabolism. Fluorescence lifetime imaging microscopy of NADH autofluorescence offers a marker-free readout of the mitochondrial function of cells in their natural microenvironment and allows different pools of NADH to be distinguished within a cell. Despite its many advantages in terms of spatial resolution and in vivo applicability, this technique still requires improvement in order to be fully useful in bioenergetics research. In the present review, we give a summary of technical and biological challenges that have so far limited the spread of this powerful technology. To help overcome these challenges, we provide a comprehensible overview of biological applications of NADH imaging, along with a detailed summary of valid imaging approaches that may be used to tackle many biological questions. This review is meant to provide all scientists interested in bioenergetics with support on how to embed successfully NADH imaging in their research. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Energy Metabolism/physiology , Mitochondria/metabolism , NAD/chemistry , Fluorescence , Microscopy, Fluorescence/methods , Optical Imaging , Oxidation-Reduction , Spectrometry, Fluorescence
4.
J Biophotonics ; 11(10): e201800085, 2018 10.
Article in English | MEDLINE | ID: mdl-29877627

ABSTRACT

During photodynamic therapy (PDT), disruption of cell respiration and metabolic changes could be one of the first events. Photophysical characteristics of the photosensitizer (PS) and its specific redox potential define consumption of molecular oxygen followed by generation of reactive oxygen species. The potential PS TLD1433 is based on transition metal Ru(II) and possess an oxygen-dependent luminescence. This enables the study of oxygen consumption by PS-phosphorescence lifetime imaging (PLIM) and simultaneously changes the cellular metabolic state by nicotinamide adenine dinucleotide (NAD(P)H)-fluorescence lifetime imaging (FLIM). Within this study, localization and cellular function of TLD1433 is investigated in bladder carcinoma cells using time-resolved and confocal laser scanning microscopy. Simultaneous FLIM/PLIM of NAD(P)H and TLD1433 during PDT correlated oxygen consumption, redox state and cellular energy metabolism. Our investigations aimed to provide a personalized protocol in theranostic PDT procedures and demonstrate the potential use of TLD1433 PDT also under hypoxic conditions, which are otherwise difficult to treat.


Subject(s)
Coordination Complexes/chemistry , Intracellular Space/metabolism , NADP/metabolism , Optical Imaging , Oxygen/metabolism , Phenanthrolines/chemistry , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Biological Transport , Cell Line, Tumor , Coordination Complexes/metabolism , Humans , Oxidation-Reduction , Phenanthrolines/metabolism , Photosensitizing Agents/metabolism
5.
Neurophotonics ; 4(4): 045004, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29181426

ABSTRACT

Alterations of cellular bioenergetics are a common feature in most neurodegenerative disorders. However, there is a selective vulnerability of different brain regions, cell types, and even mitochondrial populations to these metabolic disturbances. Thus, the aim of our study was to establish and validate an in vivo metabolic imaging technique to screen for mitochondrial function on the subcellular level. Based on nicotinamide adenine dinucleotide (phosphate) fluorescence lifetime imaging microscopy [NAD(P)H FLIM], we performed a quantitative correlation to high-resolution respirometry. Thereby, we revealed mitochondrial matrix pH as a decisive factor in imaging NAD(P)H redox state. By combining both parameters, we illustrate a quantitative, high-resolution assessment of mitochondrial function in metabolically modified cells as well as in an amyloid precursor protein-overexpressing model of Alzheimer's disease. Our metabolic imaging technique provides the basis for dissecting mitochondrial deficits not only in a range of neurodegenerative diseases, shedding light onto bioenergetic failures of cells remaining in their metabolic microenvironment.

6.
J Biophotonics ; 9(8): 800-11, 2016 08.
Article in English | MEDLINE | ID: mdl-26990032

ABSTRACT

Cellular responses to oxygen tension have been studied extensively. Oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescence sensor. The simultaneous usage of FLIM of coenzymes as NAD(P)H and FAD(+) and PLIM of oxygen sensors could provide information about correlation of metabolic pathways and oxygen tension. We investigated correlative NAD(P)H-FLIM and oxygen sensing-PLIM for simultaneously analyzing cell metabolism and oxygen tension. Cell metabolism and pO2 were observed under different hypoxic conditions in squamous carcinoma cell cultures and in complex ex vivo systems. Increased hypoxia induced an increase of the phosphorescence lifetime of Ru(BPY)3 and in most cases a decrease in the lifetime of NAD(P)H which is in agreement to the expected decrease of the protein-bound NAD(P)H during hypoxia. Oxygen was modulated directly in the mitochondrial membrane. Blocking of complex III and accumulation of oxygen could be observed by both the decrease of the phosphorescence lifetime of Ru(BPY)3 and a reduction of the lifetime of NAD(P)H which was a clear indication of acute changes in the redox state of the cells. For the first time simultaneous FLIM/PLIM has been shown to be able to visualize intracellular oxygen tension together with a change from oxidative to glycolytic phenotype.


Subject(s)
Carcinoma, Squamous Cell/metabolism , NADP/metabolism , Oxygen/metabolism , Cell Hypoxia , Cell Line, Tumor , Humans , Microscopy, Confocal , Oxidation-Reduction
7.
J Biomed Opt ; 19(9): 96005, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25202900

ABSTRACT

Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.


Subject(s)
Image Processing, Computer-Assisted/methods , Mouth Mucosa/cytology , Mouth Mucosa/metabolism , Mouth Neoplasms/metabolism , Optical Imaging/methods , Cell Line, Tumor , Humans , Mouth Mucosa/chemistry , Mouth Neoplasms/chemistry , NAD/chemistry
8.
J Colloid Interface Sci ; 341(1): 30-7, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19836024

ABSTRACT

Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) was applied to validate GRGDS peptide patterned surfaces. The structuring of the surfaces included several steps: micro contact printing (microCP), chemical etching and aminofunctionalization followed by chemical coupling of spacer-linked GRGDS peptides via an isothiocyanate anchor. TOF-SIMS analysis of characteristic ions and molecular fragments with a lateral resolution of 100 nm allowed proving the change in chemical properties of the surface with each step during the structuring process. We found that the application of polydimethylsiloxane as stamp material resulted in the contamination of the surface with this polymer. TOF-SIMS investigations, however, also showed that during the preparation process the contaminations were removed and do not influence the bio functionality of the surface patterns. The results of the surface analysis carried out with TOF-SIMS were confirmed by complementary cell adhesion experiments with murine fibroblasts. As a result, specific cell adhesion restricted to GRGDS peptide functionalized areas was obvious by the formation of focal adhesion contacts in the fibroblasts. Thus, TOF-SIMS is the method of choice in chemical characterization of surfaces in structuring and functionalization processes, because it offers the opportunity to follow surface contamination during the preparation process and to assess the influence of the contamination on the applicability of the final substrate.


Subject(s)
Fibroblasts/chemistry , Oligopeptides/chemistry , Animals , Cell Adhesion , Fibroblasts/metabolism , Mice , Microscopy, Electron, Transmission , Molecular Structure , Oligopeptides/metabolism , Spectrometry, Mass, Secondary Ion , Surface Properties
9.
Biomaterials ; 29(20): 3004-13, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18433862

ABSTRACT

With the advances made in surface patterning by micro- and nanotechnology, alternative methods to immobilize biomolecules for different purposes are highly desired. RGD peptides are commonly used to create cell-attractive surfaces for cell-biological and also medical applications. We have developed a fast, one-step method to bind RGD peptides covalently to surfaces by thiourea formation, which can be applied to structured and unstructured materials. RGD peptides were fused to an isothiocyanate anchor during synthesis and directly immobilized on amino-terminated surfaces. The spreading behavior of fibroblasts and the formation of focal contacts served to prove the applicability of the coupling method. Two different linear peptides and one cyclic peptide were compared. All the peptides induced spreading behavior and the formation of focal contacts in murine fibroblasts. Adhesion was specific as cells neither recognized the corresponding negative control peptides nor spread in the presence of soluble H-RGDS-OH peptide. We successfully applied our coupling method to functionalize surface patterns created by microcontact printing (microCP) and chemical etching. Cells recognize areas selectively coated with RGD-containing peptides, proliferate and maintain this preference during long-term cultivation. Our method significantly facilitates surface modification with any kind of peptide - even for the preparation of peptide-functionalized small surface areas.


Subject(s)
Cell Adhesion , Isothiocyanates/chemistry , Oligopeptides/chemistry , Animals , Base Sequence , Cell Proliferation , Cells, Cultured , DNA Primers , Immunohistochemistry , Mice , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...