Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Obes (Lond) ; 40(12): 1864-1874, 2016 12.
Article in English | MEDLINE | ID: mdl-27534841

ABSTRACT

BACKGROUND: A membrane-penetrating cation, dodecyltriphenylphosphonium (C12TPP), facilitates the recycling of fatty acids in the artificial lipid membrane and mitochondria. C12TPP can dissipate mitochondrial membrane potential and may affect total energy expenditure and body weight in animals and humans. METHODS: We investigated the metabolic effects of C12TPP in isolated brown-fat mitochondria, brown adipocyte cultures and mice in vivo. Experimental approaches included the measurement of oxygen consumption, carbon dioxide production, western blotting, magnetic resonance imaging and bomb calorimetry. RESULTS: In mice, C12TPP (50 µmol per (day•kg body weight)) in the drinking water significantly reduced body weight (12%, P<0.001) and body fat mass (24%, P<0.001) during the first 7 days of treatment. C12TPP did not affect water palatability and intake or the energy and lipid content in feces. The addition of C12TPP to isolated brown-fat mitochondria resulted in increased oxygen consumption. Three hours of pretreatment with C12TPP also increased oligomycin-insensitive oxygen consumption in brown adipocyte cultures (P<0.01). The effects of C12TPP on mitochondria, cells and mice were independent of uncoupling protein 1 (UCP1). However, C12TPP treatment increased the mitochondrial protein levels in the brown adipose tissue of both wild-type and UCP1-knockout mice. Pair-feeding revealed that one-third of the body weight loss in C12TPP-treated mice was due to reduced food intake. C12TPP treatment elevated the resting metabolic rate (RMR) by up to 18% (P<0.05) compared with pair-fed animals. C12TPP reduced the respiratory exchange ratio, indicating enhanced fatty acid oxidation in mice. CONCLUSIONS: C12TPP combats diet-induced obesity by reducing food intake, increasing the RMR and enhancing fatty acid oxidation.


Subject(s)
Diet, High-Fat/adverse effects , Mitochondria/metabolism , Obesity/drug therapy , Organophosphorus Compounds/pharmacology , Thermogenesis/physiology , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Animals , Disease Models, Animal , Energy Metabolism , Lipid Metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacokinetics , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism
2.
Biochemistry (Mosc) ; 80(5): 620-8, 2015 May.
Article in English | MEDLINE | ID: mdl-26071782

ABSTRACT

Obesity is associated with premature mortality, impaired quality of life, and large healthcare costs. However, treatment options remain quite limited. Here we studied potential anti-obesity effects of a novel cationic mitochondrial uncoupler, C4R1 (derivative of rhodamine 19) in C57Bl/6 mice. Obesity was induced by long-term (eight weeks) high fat diet feeding at thermoneutrality. The treated group of mice received consecutively two doses of C4R1 in drinking water (30 and 12-14 µmol/kg daily) during 30 days. Effects of C4R1 were dose-dependent. After six days of C4R1 treatment at dose 30 µmol/kg daily, food intake was reduced by 68%, body weight by 19%, and fat mass by 21%. Body weight decrease was explained partly by reduced food intake and partly by increased metabolism, likely resulting from uncoupling. Body fat reduction upon C4R1 treatment was associated with improved lipid utilization estimated from decrease in respiratory quotient to the minimal level (0.7). Interestingly, the classical uncoupler 2,4-dinitrophenol at similar dose (27 µmol/kg daily) did not have any effect. Our results are relevant to the search for substances causing mild uncoupling of mitochondria that could be a promising therapeutic strategy to treat obesity.


Subject(s)
Adiposity/drug effects , Body Weight/drug effects , Eating/drug effects , Obesity/drug therapy , Rhodamines/pharmacology , Uncoupling Agents/pharmacology , Animals , Dose-Response Relationship, Drug , Male , Mice , Obesity/metabolism , Obesity/pathology , Rhodamines/chemistry , Uncoupling Agents/chemistry
3.
Biochemistry (Mosc) ; 75(3): 342-52, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20370613

ABSTRACT

Cytochrome c oxidase of the ba(3)-type from Thermus thermophilus does not interact with cyanide in the oxidized state and acquires the ability to bind heme iron ligands only upon reduction. Cyanide complexes of the reduced heme a(3) in cytochrome ba(3) and in mitochondrial aa(3)-type cytochrome oxidase are similar spectroscopically, but the a(3)(2+)-CN complex of cytochrome ba(3) is strikingly tight. Experiments have shown that the K(d) value of the cytochrome ba(3) complex with cyanide in the presence of reductants of the enzyme binuclear center does not exceed 10(-8) M, which is four to five orders of magnitude less than the K(d) of the cyanide complex of the reduced heme a(3) of mitochondrial cytochrome oxidase. The tightness of the cytochrome ba(3) complex with cyanide is mainly associated with an extremely slow rate of the ligand dissociation (k(off) < or = 10(-7) sec(-1)), while the rate of binding (k(on) ~ 10(2) M(-1).sec(-1)) is similar to the rate observed for the mitochondrial cytochrome oxidase. It is proposed that cyanide dissociation from the cytochrome ba(3) binuclear center might be hindered sterically by the presence of the second ligand molecule in the coordination sphere of Cu(B)(2+). The rate of cyanide binding with the reduced heme a(3) does not depend on pH in the neutral area, but it approaches linear dependence on H+ activity in the alkaline region. Cyanide binding appears to be controlled by protonation of an enzyme group with pK(a) = 8.75.


Subject(s)
Cyanides/metabolism , Electron Transport Complex IV/metabolism , Thermus thermophilus/enzymology , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...