Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673729

ABSTRACT

Here, we continued the investigation of anti-HSV-1 activity and neuroprotective potential of 14 polyphenolic compounds isolated from Maackia amurensis heartwood. We determined the absolute configurations of asymmetric centers in scirpusin A (13) and maackiazin (10) as 7R,8R and 1″S,2″S, respectively. We showed that dimeric stilbens maackin (9) and scirpusin A (13) possessed the highest anti-HSV-1 activity among polyphenols 1-14. We also studied the effect of polyphenols 9 and 13 on the early stages of HSV-1 infection. Direct interaction with the virus (virucidal activity) was the main mechanism of the antiviral activity of these compounds. The neuroprotective potential of polyphenolic compounds from M. amurensis was studied using models of 6-hydroxydopamine (6-OHDA)-and paraquat (PQ)-induced neurotoxicity. A dimeric stilbene scirpusin A (13) and a flavonoid liquiritigenin (6) were shown to be the most active compounds among the tested polyphenols. These compounds significantly increased the viability of 6-OHDA-and PQ-treated Neuro-2a cells, elevated mitochondrial membrane potential and reduced the intracellular ROS level. We also found that scirpusin A (13), liquiritigenin (6) and retusin (3) considerably increased the percentage of live Neuro-2a cells and decreased the number of early apoptotic cells. Scirpusin A (13) was the most promising compound possessing both anti-HSV-1 activity and neuroprotective potential.


Subject(s)
Antiviral Agents , Herpes Simplex , Herpesvirus 1, Human , Neurons , Neuroprotective Agents , Oxidative Stress , Polyphenols , Polyphenols/pharmacology , Polyphenols/chemistry , Oxidative Stress/drug effects , Herpesvirus 1, Human/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Neurons/drug effects , Neurons/metabolism , Animals , Herpes Simplex/drug therapy , Mice , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Cell Survival/drug effects
2.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985562

ABSTRACT

In this study, we isolated a new isoflavanostilbene maackiapicevestitol (1) as a mixture of two stable conformers 1a and 1b as well as five previously known dimeric and monomeric stilbens: piceatannol (2), maackin (3), scirpusin A (4), maackiasine (5), and maackolin (6) from M. amurensis heartwood, using column chromatography on polyamide, silicagel, and C-18. The structures of these compounds were elucidated by NMR, HR-MS, and CD techniques. Maksar® obtained from M. amurensis heartwood and polyphenolics 1-6 possessed moderate anti-HSV-1 activity in cytopathic effect (CPE) inhibition and RT-PCR assays. A model of PQ-induced neurotoxicity was used to study the neuroprotective potential of polyphenolic compounds from M. amurensis. Maksar® showed the highest neuroprotective activity and increased cell viability by 18% at a concentration of 10 µg/mL. Maackolin (6) also effectively increased the viability of PQ-treated Neuro-2a cells and the value of mitochondrial membrane potential at concentrations up to 10 µΜ. Maksar® and compounds 1-6 possessed higher FRAP and DPPH-scavenging effects than quercetin. However, only compounds 1 and 4 at concentrations of 10 µM as well as Maksar® (10 µg/mL) statistically significantly reduced the level of intracellular ROS in PQ-treated Neuro-2a cells.


Subject(s)
Maackia , Plant Extracts , Maackia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Quercetin
3.
Antioxidants (Basel) ; 11(4)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35453394

ABSTRACT

Pterocarpans and related polyphenolics are known as promising neuroprotective agents. We used models of rotenone-, paraquat-, and 6-hydroxydopamine-induced neurotoxicity to study the neuroprotective activity of polyphenolic compounds from Lespedeza bicolor and their effects on mitochondrial membrane potential. We isolated 11 polyphenolic compounds: a novel coumestan lespebicoumestan A (10) and a novel stilbenoid 5'-isoprenylbicoloketon (11) as well as three previously known pterocarpans, two pterocarpens, one coumestan, one stilbenoid, and a dimeric flavonoid. Pterocarpans 3 and 6, stilbenoid 5, and dimeric flavonoid 8 significantly increased the percentage of living cells after treatment with paraquat (PQ), but only pterocarpan 6 slightly decreased the ROS level in PQ-treated cells. Pterocarpan 3 and stilbenoid 5 were shown to effectively increase mitochondrial membrane potential in PQ-treated cells. We showed that pterocarpans 2 and 3, containing a 3'-methyl-3'-isohexenylpyran ring; pterocarpens 4 and 9, with a double bond between C-6a and C-11a; and coumestan 10 significantly increased the percentage of living cells by decreasing ROS levels in 6-OHDA-treated cells, which is in accordance with their rather high activity in DPPH• and FRAP tests. Compounds 9 and 10 effectively increased the percentage of living cells after treatment with rotenone but did not significantly decrease ROS levels.

4.
Fitoterapia ; 157: 105121, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34990769

ABSTRACT

We investigated the ability of six prenylated prerocarpans, stilbenoid, and a new dimeric flavonoid, lespebicolin B, from stem bark as well as two 3-O-rutinosides and a mixture of 3-O-ß-D-glucosides of quercetin and kaempferol from flowers of Lespedeza bicolor to inhibit HSV-1 replication in Vero cells. Pretreatment of HSV-1 with polyphenolic compounds (direct virucidal effect) showed that pterocarpans lespedezol A2 (1), (6aR,11aR)-6a,11a-dihydrolespedezol A2 (2), (6aR,11aR)-2-isoprenyldihydrolespedezol A2 (4), and (6aR,11aR,3'R)-dihydrolespedezol A3 (5) significantly inhibited viral replication, with a selective index (SI) ≥10. Compound 4 possessed the lowest 50% - inhibiting concentration (IC50) and the highest SI values (2.6 µM and 27.9, respectively) in this test. (6aR,11aR)-2-Isoprenyldihydrolespedezol A2 (4) also had a moderate effect under simultaneous treatment of Vero cells with the tested compound and virus (IC50 and SI values were 5.86 µM and 12.4, respectively). 3-O-rutinosides of quercetin and kaempferol and a mixture of 3-O-ß-D-glucosides of quercetin and kaempferol (10 and 12) also showed significant virucidal activity, with SI values of 12.5, 14.6, and 98.2, respectively, and IC50 values of 8.6, 12.2, and 3.6, respectively. We also performed a quantitative structure-activity relationship (QSAR) analysis of data on the virucidal activity of polyphenolics with 4 < pIC50 < 6. It was found that the virucidal activity of these compounds depended on both the structure of the aromatic part and the conformation of geranyl and isoprenyl side chains of their molecules. These findings are correlated with the largest value of the principal moment of inertia (pmi) descriptor describing the geometry of molecules.


Subject(s)
Herpesvirus 1, Human/drug effects , Lespedeza/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Computer Simulation , Flowers/chemistry , Herpesvirus 1, Human/physiology , Inhibitory Concentration 50 , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polyphenols/chemistry , Polyphenols/isolation & purification , Quantitative Structure-Activity Relationship , Spectrometry, Mass, Electrospray Ionization , Vero Cells/drug effects
5.
Fitoterapia ; 135: 64-72, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31004693

ABSTRACT

Four new pterocarpans (6aR,11aR)-6a,11a-dihydrolespedezol A2 (2), (6aR,11aR)-2-isoprenyl-6a,11a-dihydrolespedezol A2 (3), (6aR,11aR,3'R)-6a,11a-dihydrolespedezol A3 (4), (6aR,11aR,3'S)-6a,11a-dihydrolespedezol A3 (5) and one new stilbenoid with 1,2-diketone fragment named bicoloketone (6) along with one previously known pterocarpen lespedezol A2 (1) have been isolated from Lespedeza bicolor stem bark using multistage column chromatography on polyamide and silica gel. The structures of the isolated polyphenolic compounds were determined by spectroscopic methods. The absolute configurations of 4 and 5 were determined by comparison of their electronic circular dichroism (ECD) spectra obtained experimentally and the spectra calculated using time-dependent density functional theory (TDDFT). The isolated compounds exhibited a moderate DPPH scavenging effect and ferric reducing power compared to the reference antioxidant quercetin. The cytotoxicity of compounds against three human cancer cell lines, HTB-19, Kyse-30, and HEPG-2, and two normal cell lines, RPE-1 and HEK-293, was tested using the MTT assay. Compound 3 showed the strongest cytotoxic activity against all cell lines (IC50 6.0-19.1 µM) compared with the positive control cisplatin. The other tested compounds possessed moderate cytotoxic activity against cancer cells.


Subject(s)
Antioxidants/pharmacology , Lespedeza/chemistry , Polyphenols/pharmacology , Pterocarpans/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Humans , Molecular Structure , Polyphenols/chemistry , Polyphenols/isolation & purification , Pterocarpans/chemistry , Pterocarpans/isolation & purification
6.
Nat Prod Commun ; 8(10): 1419-20, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24354190

ABSTRACT

A callus culture of Iris pseudacorus L. (Iridaceae) was established from plant leaves using a modified Murashige and Skoog medium. A derivative of cinnamic acid (lavandoside) (1), a neolignan (dehydrodiconiferyl alcohol-4-O-beta-D-glucopyranoside) (2) as well as three isoflavonoids, tectoridin (3), tectorigenin (4), and iristectorigenin A (5) were isolated from the callus culture. Under normal conditions, the calli accumulated 0.4% DW of polyphenols. The addition of phenylalanine to a concentration of 1 mM resulted in a 1.5-fold increase in isoflavonoid production, allowing the accumulation of 0.69% of polyphenols in the callus dry weight. Tectorigenin, a promising chemotherapeutic and chemopreventive agent for the treatment of carcinomas, was produced in I. pseudacorus calli in high quantities (0.3% DW).


Subject(s)
Iris Plant/chemistry , Isoflavones/isolation & purification , Polyphenols/isolation & purification , Cells, Cultured , Culture Techniques , Lignans/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...