Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 51(Pt 1): 193-199, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29507550

ABSTRACT

It has been recently established that the accuracy of structural parameters from X-ray refinement of crystal structures can be improved by using a bank of aspherical pseudoatoms instead of the classical spherical model of atomic form factors. This comes, however, at the cost of increased complexity of the underlying calculations. In order to facilitate the adoption of this more advanced electron density model by the broader community of crystallographers, a new software implementation called DiSCaMB, 'densities in structural chemistry and molecular biology', has been developed. It addresses the challenge of providing for high performance on modern computing architectures. With parallelization options for both multi-core processors and graphics processing units (using CUDA), the library features calculation of X-ray scattering factors and their derivatives with respect to structural parameters, gives access to intermediate steps of the scattering factor calculations (thus allowing for experimentation with modifications of the underlying electron density model), and provides tools for basic structural crystallographic operations. Permissively (MIT) licensed, DiSCaMB is an open-source C++ library that can be embedded in both academic and commercial tools for X-ray structure refinement.

2.
J Synchrotron Radiat ; 19(Pt 4): 637-46, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22713901

ABSTRACT

A spot-integration method is described which does not require prior indexing of the reflections. It is based on statistical analysis of the values from each of the pixels on successive frames, followed for each frame by morphological analysis to identify clusters of high value pixels which form an appropriate mask corresponding to a reflection peak. The method does not require prior assumptions such as fitting of a profile or definition of an integration box. The results are compared with those of the seed-skewness method which is based on minimizing the skewness of the intensity distribution within a peak's integration box. Applications in Laue photocrystallography are presented.

3.
J Phys Chem A ; 116(13): 3359-65, 2012 Apr 05.
Article in English | MEDLINE | ID: mdl-22385365

ABSTRACT

The excited-state structure of [Cu(I)[(1,10-phenanthroline-N,N') bis(triphenylphosphine)] cations in their crystalline [BF(4)] salt has been determined at both 180 and 90 K by single-pulse time-resolved synchrotron experiments with the modified polychromatic Laue method. The two independent molecules in the crystal show distortions on MLCT excitation that differ in magnitude and direction, a difference attributed to a pronounced difference in the molecular environment of the two complexes. As the excited states differ, the decay of the emission is biexponential with two strongly different lifetimes, the longer lifetime, assigned to the more restricted molecule, becoming more prevalent as the temperature increases. Standard deviations in the current Laue study are very much lower than those achieved in a previous monochromatic study of a Cu(I) 2,9-dimethylphenanthroline substituted complex ( J. Am. Chem. Soc. 2009 , 131 , 6566 ), but the magnitudes of the shifts on excitation are similar, indicating that lattice restrictions dominate over the steric effect of the methyl substitution. Above all, the study illustrates emphatically that molecules in solids have physical properties different from those of isolated molecules and that their properties depend on the specific molecular environment. This conclusion is relevant for the understanding of the properties of molecular solid-state devices, which are increasingly used in current technology.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Phenanthrolines/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure , Photochemical Processes , Photochemistry , Quantum Theory , Temperature , Time Factors
4.
J Appl Crystallogr ; 44(Pt 6): 1182-1189, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22199400

ABSTRACT

A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license.

SELECTION OF CITATIONS
SEARCH DETAIL
...