Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 110(1): 015003, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23383801

ABSTRACT

Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-µm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.


Subject(s)
Electrons , Lasers , Magnetics , Models, Theoretical , Technology, Radiologic/methods , Particle Accelerators , Spectrum Analysis/methods
2.
Phys Rev Lett ; 106(10): 105001, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21469796

ABSTRACT

Experiments using an electron beam produced by laser-wakefield acceleration have shown that varying the overall beam-plasma interaction length results in current filamentation at lengths that exceed the laser depletion length in the plasma. Three-dimensional simulations show this to be a combination of hosing, beam erosion, and filamentation of the decelerated beam. This work suggests the ability to perform scaled experiments of astrophysical instabilities. Additionally, understanding the processes involved with electron beam propagation is essential to the development of wakefield accelerator applications.

3.
Phys Rev Lett ; 105(3): 034801, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20867770

ABSTRACT

Stimulated Raman side scattering of an ultrashort high power laser pulse is studied in experiments on laser wakefield acceleration. Experiments and simulations reveal that stimulated Raman side scattering occurs at the beginning of the interaction, that it contributes to the evolution of the pulse prior to wakefield formation, and also that it affects the quality of electron beams generated. The relativistic shift of the plasma frequency is measured.

4.
Phys Rev Lett ; 104(13): 134801, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20481887

ABSTRACT

Electron density bubbles--wake structures generated in plasma of density n(e) approximately 10(19) cm(-3) by the light pressure of intense ultrashort laser pulses--are shown to reshape weak copropagating probe pulses into optical "bullets." The bullets are reconstructed using frequency-domain interferometric techniques in order to visualize bubble formation. Bullets are confined in three dimensions to plasma-wavelength size, and exhibit higher intensity, broader spectrum and flatter temporal phase than surrounding probe light, evidence of their compression by the bubble. Bullets observed at 0.8 approximately < n(e) approximately < 1.2x10(19) cm(-3) provide the first observation of bubble formation below the electron capture threshold. At higher n(e), bullets appear with high shot-to-shot stability together with relativistic electrons that vary widely in spectrum, and help relate bubble formation to fast electron generation.

5.
Phys Rev Lett ; 104(2): 025004, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20366605

ABSTRACT

Experimental studies of electrons produced in a laser wakefield accelerator indicate trapping initiated by ionization of target gas atoms. Targets composed of helium and controlled amounts of various gases were found to increase the beam charge by as much as an order of magnitude compared to pure helium at the same electron density and decrease the beam divergence from 5.1+/-1.0 to 2.9+/-0.8 mrad. The measurements are supported by particle-in-cell modeling including ionization. This mechanism should allow generation of electron beams with lower emittance and higher charge than in preionized gas.

6.
Opt Lett ; 29(24): 2837-9, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15645797

ABSTRACT

We generated a record peak intensity of 0.7 x 10(22) W/cm2 by focusing a 45-TW laser beam with an f/0.6 off-axis paraboloid. The aberrations of the paraboloid and the low-energy reference laser beam were measured and corrected, and a focal spot size of 0.8 microm was achieved. It is shown that the peak intensity can be increased to 1.0 x 10(22) W/cm2 by correction of the wave front of a 45-TW beam relative to the reference beam. The phase and amplitude measurement provides for an efficient full characterization of the focal field.

SELECTION OF CITATIONS
SEARCH DETAIL
...