Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828890

ABSTRACT

The study aimed to analyze nusinersen metabolites in the cerebrospinal fluid samples using ion-pair reversed-phase ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Three different sample preparation methods were tested for extraction and purification, but solid phase extraction appeared to be the most suitable, allowing a significant sample enrichment (40-fold). This step was necessary to detect and identify metabolites of nusinersen in the cerebrospinal fluid. The developed and applied analytical procedure enabled the identification of nusinersen metabolites: sequences shorter by several nucleotides from the 3' end; shorter by several nucleotides from both the 3' and 5' ends; and some depurination products. To the best of our knowledge, this is the first report on the analysis and identification of nusinersen metabolites in cerebrospinal fluid samples taken from children with spinal muscular atrophy treated with Spinraza.

2.
J Sep Sci ; 47(9-10): e2300873, 2024 May.
Article in English | MEDLINE | ID: mdl-38801758

ABSTRACT

Water in the subcritical state is characterized by properties significantly different from water under standard conditions. These include low viscosity, low surface tension, and a much lower dielectric constant, increasing the solubility of nonpolar substances. For this reason, it can provide an alternative solvent and be used in chromatographic techniques-subcritical water chromatography (SBWC). SBWC appears to be one of the greenest analytical techniques until we unravel chromatography with pure water at room temperature. The versatility of SBWC is explored through its applications in the separation and analysis of a wide range of compounds, including pharmaceuticals, natural products, etc. The use of subcritical water as a mobile phase requires suitable stable stationary phases and special apparatus. Still, it makes it possible to conduct analyses without using organic solvents. When using this technique, it is important to remember that it suits the analysis of thermally stable substances. The following work is a critical review of developments in SBWC.

3.
Foods ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38672862

ABSTRACT

This study presents an innovative method for caffeine determination in tea, employing ethanol as the sole organic solvent for both SPE sample preparation and chromatographic analysis. This approach aligns with green chemistry principles, as confirmed by a comparative study highlighting ethanol's safety and eco-friendliness compared to traditional solvents. The experiments validate ethanol's efficacy in caffeine extraction and chromatographic analysis, minimizing environmental impact and eliminating toxicity risks. Utilizing a reduced chromatography column enhances the method's efficiency and sustainability, resulting in a low limit of quantitation (0.125 µg/mL) and good reproducibility (RSD < 2.5%). Based on tea from the Polish market, the findings reveal the caffeine content (19.29-37.69 mg/g) and endorse ethanol's role in enhancing sustainable chemical analysis in food science.

4.
Foods ; 12(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37444212

ABSTRACT

Caffeine is a natural psychoactive substance that belongs to a group of chemical compounds called purine alkaloids. Caffeine is found in various plants such as coffee, tea, cocoa, guarana, and yerba mate. It is often added to dietary supplements for its ability to increase metabolism and aid in weight loss. To determine the caffeine content in dietary supplements, a novel UHPLC method was developed, compatible with the rules of green analytical chemistry. The developed method used only water and ethanol for sample preparation and chromatographic separation on a short C18 column. The obtained method confirmed that caffeine may be analyzed using only environmentally friendly solvents, ethanol, and water. The developed method is characterized by its low limit of quantitation, equal to 0.047 µg/mL, and good reproducibility (a relative standard deviation lower than 1.1%). The obtained results show that the caffeine content in tested dietary supplements is 4-35% higher than the declared amount in most cases. In comparison, the caffeine content of the drug determined using this method was performed with an accuracy of 0.4% RSD.

5.
Molecules ; 28(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050011

ABSTRACT

Beta-blockers are a class of medications predominantly used to manage abnormal heart rhythms. They are also widely used to treat high blood pressure. From the liquid chromatography separation point of view, beta-blockers are interesting molecules due to their hydrophobic-hydrophilic properties. Thus, the study aimed to investigate the beta-blocker separation selectivity on four phosphodiester stationary phases in reversed-phase liquid chromatography (RP LC) and hydrophilic interactions liquid chromatography (HILIC). On tested stationary phases, beta-blockers provide retention in both chromatographic systems, RP LC and HILIC. Additionally, it was found that cation-exchange mechanisms have a significant contribution to retention. Separations were enhanced by applying ChromSword software for gradient optimization and Intelligent Peak Deconvolution Analysis to separate unseparated peaks digitally.


Subject(s)
Chromatography, Reverse-Phase , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...