Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 74(1): 39-47, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23628882

ABSTRACT

BACKGROUND: In our model of a congenital heart defect (CHD) with increased pulmonary blood flow (PBF; shunt), we have recently shown a disruption in carnitine homeostasis, associated with mitochondrial dysfunction and decreased endothelial nitric oxide synthase (eNOS)/heat shock protein (Hsp)90 interactions that contribute to eNOS uncoupling, increased superoxide levels, and decreased bioavailable nitric oxide (NO). Therefore, we undertook this study to test the hypothesis that L-carnitine therapy would maintain mitochondrial function and NO signaling. METHODS: Thirteen fetal lambs underwent in utero placement of an aortopulmonary graft. Immediately after delivery, lambs received daily treatment with oral L-carnitine or its vehicle. RESULTS: L-Carnitine-treated lambs had decreased levels of acylcarnitine and a reduced acylcarnitine:free carnitine ratio as compared with vehicle-treated shunt lambs. These changes correlated with increased carnitine acetyl transferase (CrAT) protein and enzyme activity and decreased levels of nitrated CrAT. The lactate:pyruvate ratio was also decreased in L-carnitine-treated lambs. Hsp70 protein levels were significantly decreased, and this correlated with increases in eNOS/Hsp90 interactions, NOS activity, and NOx levels, and a significant decrease in eNOS-derived superoxide. Furthermore, acetylcholine significantly decreased left pulmonary vascular resistance only in L-carnitine-treated lambs. CONCLUSION: L-Carnitine therapy may improve the endothelial dysfunction noted in children with CHDs and has important clinical implications that warrant further investigation.


Subject(s)
Carnitine/pharmacology , Endometritis/physiopathology , Endothelium, Vascular/drug effects , Lung/blood supply , Animals , Endothelium, Vascular/physiopathology , Female , HSP90 Heat-Shock Proteins/metabolism , Homeostasis , Mitochondria/drug effects , Mitochondria/physiology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Regional Blood Flow , Sheep , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...