Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 38(13): 110577, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354038

ABSTRACT

Synaptic plasticity depends on rapid experience-dependent changes in the number of neurotransmitter receptors. Previously, we demonstrated that motor-mediated transport of AMPA receptors (AMPARs) to and from synapses is a critical determinant of synaptic strength. Here, we describe two convergent signaling pathways that coordinate the loading of synaptic AMPARs onto scaffolds, and scaffolds onto motors, thus providing a mechanism for experience-dependent changes in synaptic strength. We find that an evolutionarily conserved JIP-protein scaffold complex and two classes of mitogen-activated protein kinase (MAPK) proteins mediate AMPAR transport by kinesin-1 motors. Genetic analysis combined with in vivo, real-time imaging in Caenorhabditis elegans revealed that CaMKII is required for loading AMPARs onto the scaffold, and MAPK signaling is required for loading the scaffold complex onto motors. Our data support a model where CaMKII signaling and a MAPK-signaling pathway cooperate to facilitate the rapid exchange of AMPARs required for early stages of synaptic plasticity.


Subject(s)
Mitogen-Activated Protein Kinases , Receptors, AMPA , Animals , Caenorhabditis elegans , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Mitogen-Activated Protein Kinases/metabolism , Neuronal Plasticity/physiology , Receptors, AMPA/metabolism , Signal Transduction , Synapses/metabolism
3.
Neuron ; 86(2): 457-74, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25843407

ABSTRACT

Excitatory glutamatergic synaptic transmission is critically dependent on maintaining an optimal number of postsynaptic AMPA receptors (AMPARs) at each synapse of a given neuron. Here, we show that presynaptic activity, postsynaptic potential, voltage-gated calcium channels (VGCCs) and UNC-43, the C. elegans homolog of CaMKII, control synaptic strength by regulating motor-driven AMPAR transport. Genetic mutations in unc-43, or spatially and temporally restricted inactivation of UNC-43/CaMKII, revealed its essential roles in the transport of AMPARs from the cell body and in the insertion and removal of synaptic AMPARs. We found that an essential target of UNC-43/CaMKII is kinesin light chain and that mouse CaMKII rescued unc-43 mutants, suggesting conservation of function. Transient expression of UNC-43/CaMKII in adults rescued the transport defects, while optogenetic stimulation of select synapses revealed CaMKII's role in activity-dependent plasticity. Our results demonstrate unanticipated, fundamentally important roles for UNC-43/CaMKII in the regulation of synaptic strength.


Subject(s)
Caenorhabditis elegans/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Kinesins/metabolism , Neurons/metabolism , Potassium Channels, Voltage-Gated/physiology , Receptors, Glutamate/metabolism , Animals , Animals, Genetically Modified , Biological Transport/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Long-Term Potentiation/physiology , Mice , Mutation , Neuronal Plasticity/genetics , Patch-Clamp Techniques , Synapses/physiology
4.
Trends Neurosci ; 38(5): 279-94, 2015 May.
Article in English | MEDLINE | ID: mdl-25887240

ABSTRACT

Depression is a common cause of mortality and morbidity, but the biological bases of the deficits in emotional and cognitive processing remain incompletely understood. Current antidepressant therapies are effective in only some patients and act slowly. Here, we propose an excitatory synapse hypothesis of depression in which chronic stress and genetic susceptibility cause changes in the strength of subsets of glutamatergic synapses at multiple locations, including the prefrontal cortex (PFC), hippocampus, and nucleus accumbens (NAc), leading to a dysfunction of corticomesolimbic reward circuitry that underlies many of the symptoms of depression. This hypothesis accounts for current depression treatments and suggests an updated framework for the development of better therapeutic compounds.


Subject(s)
Depression/pathology , Excitatory Postsynaptic Potentials/physiology , Synapses/physiology , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain/pathology , Depression/drug therapy , Excitatory Postsynaptic Potentials/drug effects , Humans , Synapses/drug effects
5.
J Neurosci ; 33(40): 15669-74, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-24089474

ABSTRACT

Chronic stress promotes depression, but how it disrupts cognition and mood remains unknown. Chronic stress causes atrophy of pyramidal cell dendrites in the hippocampus and cortex in human and animal models, and a depressive-like behavioral state. We now test the hypothesis that excitatory temporoammonic (TA) synapses in the distal dendrites of CA1 pyramidal cells in rats are altered by chronic unpredictable stress (CUS) and restored by chronic antidepressant treatment, in conjunction with the behavioral consequences of CUS. We observed a decrease in AMPAR-mediated excitation at TA-CA1 synapses, but not Schaffer collateral-CA1 synapses, after CUS, with a corresponding layer-specific decrease in GluA1 expression. Both changes were reversed by chronic fluoxetine. CUS also disrupted long-term memory consolidation in the Morris water maze, a function of TA-CA1 synapses. The decreases in TA-CA1 AMPAR-mediated excitation and performance in the consolidation test were correlated positively with decreases in sucrose preference, a measure of anhedonia. We conclude that chronic stress selectively decreases AMPAR number and function at specific synapses and suggest that this underlies various depressive endophenotypes. Our findings provide evidence that glutamatergic dysfunction is an underlying cause of depression and that current first-line antidepressant drugs act by restoring excitatory synaptic strength. Our findings suggest novel therapeutic targets for this debilitating disease.


Subject(s)
CA1 Region, Hippocampal/physiopathology , Pyramidal Cells/metabolism , Receptors, AMPA/metabolism , Stress, Physiological/physiology , Stress, Psychological/physiopathology , Synaptic Transmission/physiology , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Fluoxetine/pharmacology , Male , Memory/drug effects , Memory/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Pyramidal Cells/drug effects , Rats , Rats, Sprague-Dawley , Selective Serotonin Reuptake Inhibitors/pharmacology , Synapses/drug effects , Synapses/physiology , Synaptic Transmission/drug effects
6.
Nat Neurosci ; 16(4): 464-72, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23502536

ABSTRACT

The causes of major depression remain unknown. Antidepressants elevate concentrations of monoamines, particularly serotonin, but it remains uncertain which downstream events are critical to their therapeutic effects. We found that endogenous serotonin selectively potentiated excitatory synapses formed by the temporoammonic pathway with CA1 pyramidal cells via activation of serotonin receptors (5-HT(1B)Rs), without affecting nearby Schaffer collateral synapses. This potentiation was expressed postsynaptically by AMPA-type glutamate receptors and required calmodulin-dependent protein kinase-mediated phosphorylation of GluA1 subunits. Because they share common expression mechanisms, long-term potentiation and serotonin-induced potentiation occluded each other. Long-term consolidation of spatial learning, a function of temporoammonic-CA1 synapses, was enhanced by 5-HT(1B)R antagonists. Serotonin-induced potentiation was quantitatively and qualitatively altered in a rat model of depression, restored by chronic antidepressants, and required for the ability of chronic antidepressants to reverse stress-induced anhedonia. Changes in serotonin-mediated potentiation, and its recovery by antidepressants, implicate excitatory synapses as a locus of plasticity in depression.


Subject(s)
Depression/metabolism , Disease Models, Animal , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/physiology , Serotonin/physiology , Synapses/metabolism , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Excitatory Postsynaptic Potentials/drug effects , Long-Term Potentiation/drug effects , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Random Allocation , Rats , Rats, Sprague-Dawley , Serotonin/deficiency , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Serotonin 5-HT1 Receptor Antagonists/therapeutic use , Synapses/drug effects
7.
Behav Brain Res ; 237: 71-5, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-22983217

ABSTRACT

Neurofibromatosis 1 (NF1) is a common genetic disorder known to cause a variety of physiological symptoms such as the formation of both benign and malignant tumors, and is also known to cause visuospatial learning deficits. Mouse models of NF1 show increased GTP activation of ras which may alter K+ channels. One candidate K+ channel that may contribute to deficits in NF1 is the SK (small conductance calcium-activated potassium) channel due to its role in regulation of long term potentiation (LTP), a mechanism of learning which has been shown to be impaired in Nf1(+/-) mice. We found that administration of apamin (SK antagonist) either through i.p. injection or micro-osmotic pump to Nf1(+/-) mice significantly improved performance on the water maze task in comparison to saline treated Nf1(+/-) mice on the third day of training and on the corresponding probe test. In this study we demonstrate a possible mechanism for the learning deficits seen in Nf1(+/-) mice and a possible drug therapy for rescuing these deficits.


Subject(s)
Apamin/therapeutic use , Neurofibromatosis 1/drug therapy , Potassium Channel Blockers/therapeutic use , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Locomotion/drug effects , Locomotion/genetics , Male , Mice , Mice, Transgenic , Neurofibromatosis 1/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...