Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transplant Direct ; 10(7): e1639, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911277

ABSTRACT

Background: Biomarkers that predict posttransplant alloimmunity could lead to improved long-term graft survival. Evaluation of the number of mismatched epitopes between donor and recipient HLA proteins, termed molecular mismatch analysis, has emerged as an approach to classify transplant recipients as having high, intermediate, or low risk of graft rejection. When high-resolution genotypes are unavailable, molecular mismatch analysis requires algorithmic assignment, or imputation, of a high-resolution genotyping. Although imputation introduces inaccuracies in molecular mismatch analyses, it is unclear whether these inaccuracies would impact the clinical risk assessment for graft rejection. Methods: Using renal transplant patients and donors from our center, we constructed cohorts of surrogate donor-recipient pairs with high-resolution and low-resolution HLA genotyping that were racially concordant or discordant. We systemically assessed the impact of imputation on molecular mismatch analysis for cohorts of 180-200 donor-recipient pairs for each of 4 major racial groups. We also evaluated the effect of imputation for a racially diverse validation cohort of 35 real-world renal transplant pairs. Results: In the surrogate donor-recipient cohorts, imputation preserved the molecular mismatch risk category for 90.5%-99.6% of racially concordant donor-recipient pairs and 92.5%-100% of racially discordant pairs. In the validation cohort, which comprised 72% racially discordant pairs, we found that imputation preserved the molecular mismatch risk category for 97.1% of pairs. Conclusions: Overall, these data demonstrate that imputation preserves the molecular mismatch risk assessment in the vast majority of cases and provides evidence supporting imputation in the performance of molecular mismatch analysis for clinical assessment.

2.
Transplantation ; 108(6): 1357-1367, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38361235

ABSTRACT

BACKGROUND: The formation of anti-major histocompatibility complex (MHC) antibodies is a significant barrier for many patients awaiting organ transplantation. Patients with preformed anti-MHC antibodies have limited options for suitable donors, and the formation of donor-specific anti-MHC antibodies after transplantation is a harbinger of graft rejection. Despite the recognized importance of anti-MHC antibodies, the mechanisms responsible for the differentiation of B cells after exposure to allogeneic antigens are poorly understood. METHODS: To evaluate the differentiation of B cells in response to allogeneic antigen, we used a model of H-2 b C57Bl/6 sensitization with H-2 d antigen. We used a class I MHC tetramer-based approach to identify allogeneic B cells and flow cytometric crossmatch to identify allogeneic IgM and IgG. RESULTS: We found that although the formation of anti-H-2 d IgG was robust, few class-switched B cells and germinal center B cells were formed. Antigen-specific B cells did not express classical memory B-cell markers after sensitization but had an IgM + CD21 + marginal zone B-cell phenotype. The frequency of marginal zone B cells increased after sensitization. Depletion of marginal zone B cells before sensitization or skin grafting resulted in a significant diminution of anti-H-2 d IgG and fewer germinal center B cells. Adoptive transfer experiments revealed that marginal zone B cells more efficiently differentiated into germinal center B cells and anti-donor IgG-producing cells than follicular B cells. CONCLUSIONS: These results demonstrate an important role for marginal zone B cells as a reservoir of alloreactive B cells that are activated by allogeneic antigens.


Subject(s)
B-Lymphocytes , Immunoglobulin G , Isoantibodies , Mice, Inbred C57BL , Skin Transplantation , Animals , Immunoglobulin G/immunology , B-Lymphocytes/immunology , Isoantibodies/immunology , Isoantibodies/blood , Cell Differentiation/immunology , Mice , H-2 Antigens/immunology , Graft Rejection/immunology , Graft Rejection/prevention & control , Transplantation, Homologous , Immunoglobulin M/immunology , Phenotype , Germinal Center/immunology
3.
Sci Adv ; 9(46): eadg8126, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37967174

ABSTRACT

Thymic epithelial cells (TEC) control T cell development and play essential roles in establishing self-tolerance. By using Foxn1-Cre-driven ablation of Klf6 gene in TEC, we identified Klf6 as a critical factor in TEC development. Klf6 deficiency resulted in a hypoplastic thymus-evident from fetal stages into adulthood-in which a dramatic increase in the frequency of apoptotic TEC was observed. Among cortical TEC (cTEC), a previously unreported cTEC population expressing the transcription factor Sox10 was relatively expanded. Within medullary TEC (mTEC), mTEC I and Tuft-like mTEC IV were disproportionately decreased. Klf6 deficiency altered chromatin accessibility and affected TEC chromatin configuration. Consistent with these defects, naïve conventional T cells and invariant natural killer T cells were reduced in the spleen. Late stages of T cell receptor-dependent selection of thymocytes were affected, and mice exhibited autoimmunity. Thus, Klf6 has a prosurvival role and affects the development of specific TEC subsets contributing to thymic function.


Subject(s)
Gene Expression Regulation , Thymocytes , Animals , Mice , Cell Differentiation/genetics , Chromatin/metabolism , Epithelial Cells/metabolism , Mice, Inbred C57BL , Thymocytes/metabolism , Thymus Gland/metabolism
4.
Cell Rep ; 42(8): 112993, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590141

ABSTRACT

CD8+ T cells mediate acute rejection of allografts, which threatens the long-term survival of transplanted organs. Using MHC class I tetramers, we find that allogeneic CD8+ T cells are present at an elevated naive precursor frequency relative to other epitopes, only modestly increase in number after grafting, and maintain high T cell receptor diversity throughout the immune response. While antigen-specific effector CD8+ T cells poorly express the canonical effector marker KLRG-1, expression of the activated glycoform of CD43 defines potent effectors after transplantation. Activated CD43+ effector T cells maintain high expression of the coreceptor induced T cell costimulator (ICOS) in the presence of CTLA-4 immunoglobulin (Ig), and dual CTLA-4 Ig/anti-ICOS treatment prolongs graft survival. These data demonstrate that graft-specific CD8+ T cells have a distinct response profile relative to anti-pathogen CD8+ T cells and that CD43 and ICOS are critical surface receptors that define potent effector CD8+ T cell populations that form after transplantation.


Subject(s)
Antibodies , CD8-Positive T-Lymphocytes , CTLA-4 Antigen , Transplantation, Homologous , Epitopes , Interleukin-2
SELECTION OF CITATIONS
SEARCH DETAIL
...