Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 473(19): 3371-83, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27470146

ABSTRACT

Hemoglobin (Hb)-based oxygen carriers (HBOC) have been engineered to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects linked to intrinsic heme-mediated oxidative toxicity and nitric oxide (NO) scavenging. Redox-active tyrosine residues can facilitate electron transfer between endogenous antioxidants and oxidative ferryl heme species. A suitable residue is present in the α-subunit (Y42) of Hb, but absent from the homologous position in the ß-subunit (F41). We therefore replaced this residue with a tyrosine (ßF41Y, Hb Mequon). The ßF41Y mutation had no effect on the intrinsic rate of lipid peroxidation as measured by conjugated diene and singlet oxygen formation following the addition of ferric(met) Hb to liposomes. However, ßF41Y significantly decreased these rates in the presence of physiological levels of ascorbate. Additionally, heme damage in the ß-subunit following the addition of the lipid peroxide hydroperoxyoctadecadieoic acid was five-fold slower in ßF41Y. NO bioavailability was enhanced in ßF41Y by a combination of a 20% decrease in NO dioxygenase activity and a doubling of the rate of nitrite reductase activity. The intrinsic rate of heme loss from methemoglobin was doubled in the ß-subunit, but unchanged in the α-subunit. We conclude that the addition of a redox-active tyrosine mutation in Hb able to transfer electrons from plasma antioxidants decreases heme-mediated oxidative reactivity and enhances NO bioavailability. This class of mutations has the potential to decrease adverse side effects as one component of a HBOC product.


Subject(s)
Blood Substitutes , Hemoglobins/chemistry , Tyrosine/chemistry , Electron Transport , Lipids/chemistry , Mutation , Oxidation-Reduction , Oxidative Stress , Tyrosine/genetics
2.
Biotechnol J ; 7(12): 1485-95, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23139192

ABSTRACT

Chromatography has become an indispensable tool for the purification of proteins. Since the regulatory demands on protein purity are expected to become stricter, the need for generating improved resins for chromatographic separations has increased. More advanced scientific investigations of protein structure/function relationships, in particular, have also been a driving force for generating more sophisticated chromatographic materials for protein separations. As a consequence, the development of alternative chromatographic strategies has been very rapid during the past decade and several new ligands have been designed and explored both in the laboratory and in large-scale industrial settings. This review describes some of these efforts using multimodal chromatography, where two or more physicochemical properties are used to enhance the specificity of the interactions between the protein and the ligand on the chromatographic matrix. In addition to experimental studies, computer modeling of ligand-protein binding has improved the design of ligands for protein recognition. The use of descriptors as well as in silico docking methods have been implemented to design multimodal resins in several instances.


Subject(s)
Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Proteins/isolation & purification , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Proteins/analysis , Proteins/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...