Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 11(6): 1160-1167, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32550996

ABSTRACT

We identified and explored the structure-activity-relationship (SAR) of an adamantane carboxamide chemical series of Ebola virus (EBOV) inhibitors. Selected analogs exhibited half-maximal inhibitory concentrations (EC50 values) of ∼10-15 nM in vesicular stomatitis virus (VSV) pseudotyped EBOV (pEBOV) infectivity assays, low hundred nanomolar EC50 activity against wild type EBOV, aqueous solubility >20 mg/mL, and attractive metabolic stability in human and nonhuman liver microsomes. X-ray cocrystallographic characterizations of a lead compound with the EBOV glycoprotein (GP) established the EBOV GP as a target for direct compound inhibitory activity and further provided relevant structural models that may assist in identifying optimized therapeutic candidates.

2.
Bioorg Med Chem Lett ; 26(13): 3010-3013, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27212066

ABSTRACT

The unusual activity differences of carbon linked versus oxygen linked 2-substituted piperazines as α7 nicotinic acetylcholine receptor agonists led to a conformational study of several examples. The conformational preferences of which are absent from the literature. We report the first study and explanation of the conformational preference of 2-substiturted piperazines and show an example of how this preference controls binding in a pharmaceutically relevant case. In all cases the axial conformation for these 1-acyl and 1 aryl 2-substituted piperazines was found to be preferred. For the ether linked compounds, the axial conformation was found to be further stabilized by an intramolecular hydrogen bond. The axial orientation also places the basic and pyridyl nitrogens into a special orientation that closely mimics nicotine. Molecular modeling studies confirm that the R enantiomers of the compounds can bind to the α7 nicotinic acetylcholine receptor with the basic and pyridyl nitrogens colocalized with their counterparts in Epibatidine.


Subject(s)
Piperazines/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Hydrogen Bonding , Molecular Conformation , Molecular Docking Simulation , Pyridines/chemistry , Stereoisomerism , alpha7 Nicotinic Acetylcholine Receptor/chemistry
3.
PLoS Negl Trop Dis ; 9(6): e0003878, 2015.
Article in English | MEDLINE | ID: mdl-26114876

ABSTRACT

BACKGROUND: Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Trypanosoma cruzi. The current clinical and preclinical pipeline for T. cruzi is extremely sparse and lacks drug target diversity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we developed a computational approach that utilized data from several public whole-cell, phenotypic high throughput screens that have been completed for T. cruzi by the Broad Institute, including a single screen of over 300,000 molecules in the search for chemical probes as part of the NIH Molecular Libraries program. We have also compiled and curated relevant biological and chemical compound screening data including (i) compounds and biological activity data from the literature, (ii) high throughput screening datasets, and (iii) predicted metabolites of T. cruzi metabolic pathways. This information was used to help us identify compounds and their potential targets. We have constructed a Pathway Genome Data Base for T. cruzi. In addition, we have developed Bayesian machine learning models that were used to virtually screen libraries of compounds. Ninety-seven compounds were selected for in vitro testing, and 11 of these were found to have EC50 < 10 µM. We progressed five compounds to an in vivo mouse efficacy model of Chagas disease and validated that the machine learning model could identify in vitro active compounds not in the training set, as well as known positive controls. The antimalarial pyronaridine possessed 85.2% efficacy in the acute Chagas mouse model. We have also proposed potential targets (for future verification) for this compound based on structural similarity to known compounds with targets in T. cruzi. CONCLUSIONS/ SIGNIFICANCE: We have demonstrated how combining chemoinformatics and bioinformatics for T. cruzi drug discovery can bring interesting in vivo active molecules to light that may have been overlooked. The approach we have taken is broadly applicable to other NTDs.


Subject(s)
Chagas Disease/parasitology , Drug Discovery/methods , Genome, Protozoan/genetics , Machine Learning , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/genetics , Animals , Bayes Theorem , Cell Line , Chagas Disease/drug therapy , Computational Biology , Disease Models, Animal , Female , High-Throughput Screening Assays , Humans , Metabolic Networks and Pathways , Mice , Mice, Inbred BALB C , Trypanocidal Agents/isolation & purification , Trypanosoma cruzi/drug effects
4.
J Med Chem ; 50(19): 4699-709, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17705362

ABSTRACT

Structure-activity relationship studies centered around 3'-substituted (Z)-5-(2'-(thienylmethylidene))1,2-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5H-chromeno[3,4-f]quinolines are described. A series of highly potent and efficacious selective glucocorticoid receptor modulators were identified with in vitro activity comparable to dexamethasone. In vivo evaluation of these compounds utilizing a 28 day mouse tumor xenograft model demonstrated efficacy equal to dexamethasone in the reduction of tumor volume.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzopyrans/chemical synthesis , Multiple Myeloma/drug therapy , Quinolines/chemical synthesis , Receptors, Glucocorticoid/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzopyrans/chemistry , Benzopyrans/pharmacology , Binding, Competitive , Dexamethasone/pharmacology , Humans , Mice , Mineralocorticoid Receptor Antagonists , Models, Molecular , Multiple Myeloma/pathology , Quinolines/chemistry , Quinolines/pharmacology , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Mineralocorticoid/agonists , Stereoisomerism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
Bioorg Med Chem Lett ; 17(19): 5442-6, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17703938

ABSTRACT

A series of androgen receptor modulators based on 8H-[1,4]oxazino[2,3-f]quinolin-8-ones was synthesized and evaluated in an androgen receptor transcriptional activation assay. The most potent analogues from the series exhibited single-digit nanomolar potency in vitro. Compound 18h demonstrated full efficacy in the maintenance of muscle weight, at 10 mg/kg, with reduced activity in prostate weight in an in vivo model of androgen action.


Subject(s)
Oxazines/chemical synthesis , Oxazines/pharmacology , Quinolones/chemical synthesis , Quinolones/pharmacology , Receptors, Androgen/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Humans , Indicators and Reagents , Male , Models, Molecular , Orchiectomy , Rats , Receptors, Androgen/chemistry , Receptors, Progesterone/chemistry , Receptors, Progesterone/drug effects , Receptors, Somatotropin/chemistry , Receptors, Somatotropin/drug effects , Structure-Activity Relationship , Testosterone/blood
6.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 62(Pt 11): 1067-71, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17077481

ABSTRACT

The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl)amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 A was solved and compared with the structure of the AR LBD-R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents.


Subject(s)
Receptors, Androgen/chemistry , Binding Sites , Genetic Vectors , Humans , Ligands , Models, Molecular , Polymerase Chain Reaction , Protein Conformation , Receptors, Androgen/genetics , Recombinant Proteins/chemistry
7.
Bioorg Med Chem Lett ; 16(9): 2352-6, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16364638

ABSTRACT

A new structurally simple series of potent lipophilic aza-retinoids RXR agonists has been developed. SAR studies for the N-alkyl-azadienoic acids described here demonstrate that the RXR activity profile is sensitive to the N-alkyl chain length. Further, we have expanded the work to include azadienoic acids, which exhibited many accessible conformations leading to a better understanding of the SAR around the series.


Subject(s)
Aza Compounds/pharmacology , Retinoid X Receptors/agonists , Retinoids/pharmacology , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Molecular Structure , Retinoids/chemical synthesis , Retinoids/chemistry , Stereoisomerism , Structure-Activity Relationship
8.
J Am Chem Soc ; 125(19): 5839-48, 2003 May 14.
Article in English | MEDLINE | ID: mdl-12733925

ABSTRACT

The allowed conrotatory cyclobutene ring-opening has a distinctly nonplanar carbon skeleton. Classic experiments by Brauman and Archie, and by Freedman et al., placed the allowed/forbidden gap at greater than 15 kcal/mol. Wolfgang Roth proposed that a system forced to planarity might have a smaller preference for the conrotatory mode than unconstrained systems. Such systems have now been studied theoretically and experimentally, and results that confirm Roth's postulate are presented here. The experiments were performed in Bochum, and the calculations were carried out in Osaka and Los Angeles. As the cyclobutene ring-opening transition structure approaches planarity, the energy gap between allowed conrotatory and the forbidden disrotatory pathways decreases. For the ring-opening of a cyclobutene fused to norbornene, the energy gap between the forbidden and the allowed transition state is only 4.1 kcal/mol by CASSCF and 8.0 kcal/mol by CAS-MP2 as compared to 13.4 and 19.2 kcal/mol, respectively, for the parent cyclobutene. Experimental studies of 3,4-dimethylcyclobutenes fused to various ring systems are reported, and a trend is found toward a reduced allowed/forbidden gap as the planarity of the cyclobutene is enforced.

9.
J Org Chem ; 61(8): 2813-2825, 1996 Apr 19.
Article in English | MEDLINE | ID: mdl-11667117

ABSTRACT

Substituent effects on the geometries and conrotatory electrocyclic ring openings of cyclobutenes were studied. This work extends the original investigations to many more substituents and provides a comprehensive theory of substituent effects on geometries and reaction rates. The effects of substitution at the 1 position are minimal; donor substituents raise the activation energy slightly, and powerful acceptor substituents slightly lower the activation energy. Substituents on C(3) cause small distortions of the cyclobutene geometry, in the same direction as the favored stereochemistry of reaction. Donors prefer outward rotation, while strong acceptors prefer inward rotation. The activation energy changes and cyclobutene geometrical perturbations were found to correlate with Taft sigma(R)(0) parameters. Amino, hydroxy, fluoro, chloro, methyl, cyano, formyl, and vinyl substituents were studied in the 1 position. Boryl, dimethylboryl, nitroso, formyl, nitro, carboxyl (neutral, protonated, and deprotonated), cyano, trifluoromethyl, sulfoxyl, sulfonyl, sulfinic acid, imino, N-protonated imino, ammonio, ethynyl, methyl, mercapto, chloro, fluoro, hydroxyl, amino, lithium oxy, vinyl, and acetyl were calculated as substituents in the 3 position. Comparisons with experimental results are given when available, and predictions are made in other cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...